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Focus and Scope

Reports@SCM is a non-profit electronic research journal on Mathematics published by the Societat
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Resum (CAT)
Hem estudiat els compactes que suporten mesures de Zygmund, dels quals no se’n

coneix cap caracterització. Hem introdüıt un concepte anomenat log-porositat,

que proporciona una condició suficient per tal que un compacte no pugui ser el

suport d’una mesura de Zygmund. Hem vist que aquest resultat no deriva dels

treballs de Makarov ni Kaufman. Hem introdüıt el concepte de capacitat Zygmund

d’un compacte i hem proposat una caracterització dels suports de les mesures de

Zygmund en termes d’aquesta capacitat. Hem demostrat que els compactes pels

quals el ĺımit d’aquesta capacitat és zero, no poden suportar mesures de Zygmund.

Abstract (ENG)
We analyse the compact sets that are the support of Zygmund measures, of which no

characterisation is known. We introduce the concept of log-porosity which provides

a sufficient condition that guarantees that a compact cannot be the support of

a Zygmund measure. This result does not derive from the results of Makarov and

Kaufman. We introduce the concept of Zygmund capacity of a compact and propose

a characterisation of the supports of Zygmund measures in terms of this capacity.

We prove that the compact sets for which the limit of this capacity is zero cannot

be the support of Zygmund measures.
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Zygmund measures

1. Introduction

A positive finite measure µ in R is called a Zygmund measure if there exists a constant C such that
|µ(I ) − µ(I ′)| ≤ C |I | for all pairs of adjacent intervals I , I ′ of the same length |I |. The infimum of the
values of C for which the inequality holds is called the Zygmund norm of µ and is denoted by ‖µ‖∗.

It can be seen that a positive measure is a Zygmund measure if and only if its distribution function
belongs to the Zygmund space Λ∗, defined as the set of real-valued and bounded functions such that

‖f ‖∗ = sup
x ,h∈Rn

|f (x + h) + f (x − h)− 2f (x)|
‖h‖

< +∞. (1)

Let us recall the definition of Hausdorff measure. A measure function is an increasing continuous
function ϕ : [0, δ) → R+ such that ϕ(0) = 0. Let E ⊂ R be a bounded set, we define the Hausdorff
measure of E with respect to ϕ as

Hϕ(E ) = lim
ε→0

inf

∑
j

ϕ(|Ij |) : E ⊂
⋃
j

Ij and |Ij | ≤ ε

 .

If ϕ(t) = tα for some α > 0, then we will write Hα(E ).

Frostman’s Lemma ([7, p. 112]) states that a compact set K is the support of a Lipα measure if and
only if Hα(K ) > 0. As a consequence, compact sets that are the support of Lipα measures are completely
determined. Although Zygmund measures can be considered as the limit of Lipα measures as α → 1
(see [8]), a characterisation of the compact sets that are the support of Zygmund measures is not known.

2. Preliminary results

Clearly, the Lebesgue measure restricted to a positive measure set is a Zygmund measure. The following
theorem proves the existence of a Zygmund measure whose support has zero Lebesgue measure.

Theorem 2.1 (Kahane). There exists a positive singular Zygmund measure.

Sketch of proof. In [3], Kahane proved his theorem by geometrically building a Zygmund measure whose
support has zero Lebesgue measure.

Let Qn denote the tetradic intervals of length 4−n and let us define the following succession of simple
functions: s0 ≡ 1 and sn(x) = sn−1(x) + εn(x), where

εn(x) =

{
−1 if x ∈ I1 ∪ I4,

1 if x ∈ I2 ∪ I3,

and I1, I2, I3, I4 ∈ Qn such that1 I1 ∪ I2 ∪ I3 ∪ I4 = Ij ∈ Qn−1 and x ∈ Ij .

1We consider Ik to the left of Ik+1, for k = 1, 2, 3.
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Let us consider the stopping time τ(x) = inf{n : sn(x) = 0}. Cleary, τ(x) < ∞ for almost all x . Let
us build the succession of measures defined by dµn = sn∧τ dx , where n ∧ τ = min{n, τ} and dx is the
Lebesgue measure. It can be seen that µn is a positive probability measure. In addition, if we denote by µ
the limit of µn as n→∞, it can be seen that µ is a Zygmund measure and its support has zero Lebesgue
measure.

Theorem 2.2 (Makarov). If µ is a positive Zygmund measure, then µ is absolutely continuous with respect
to HΦ, where

Φ(t) = t

√
log

(
1

t

)
· log log log

(
1

t

)
. (2)

In addition, there exists a Zygmund measure ν which satisfies 0 < HΦ(supp (ν)) <∞.

Makarov’s Theorem provides the optimal measure function φ such that if a compact set K has Hφ(K ) =
0, then it cannot be the support of a Zygmund measure. The proof of the first and second statements of
Makarov’s Theorem can be found in [6] and [5] respectively.

Theorem 2.3 (Kaufman). For each measure function h such that lim
t→0

t
h(t) = 0, there exists a compact

set K with Hh(K ) > 0 which is not the support of a Zygmund measure.

Kaufman’s Theorem implies that it is impossible to characterise the supports of Zygmund measures in
terms of Hausdorff measures. In [4], Kaufman proved his theorem by introducing a special class of sets: A
compact set E is called porous (with a parameter a > 0) if, for each δ > 0, there exists a covering of E
by disjoint open intervals Iεt (xt) = (xt − εt , xt + εt) such that εt < δ and each interval Iεt (xt) contains an
interval Iaεt (x ′t) = (x ′t − aεt , x ′t + aεt) ⊂ Iεt (xt) disjoint from E .

Kaufman proved that porous sets cannot be the support of Zygmund measures and that for each
function h that satisfies the hypothesis of Theorem 2.3, there exists a porous set K with Hh(K ) > 0.

Proof. Let S = {n1 < n2 < · · · < nk < nk+1 < · · · } be a sequence of positive integers whose complement
is infinite and let us define

E =

{ ∞∑
k=1

εk 2−nk

∣∣∣∣∣ εk ∈ {0, 1} ∀k

}
.

Let m be an integer not in S and let x ∈ E . Then a ≤ 2m−1x ≤ a+ 1
2 for some a ∈ N0 and consequently,

each element of E has distance ≤ d = 2−m−1 from one of the centres
{(

q + 1
4

)
21−m | q ∈ N0

}
. The

distance between two consecutive centres is 4d , hence E is porous.

We need to define S so that Hh(E ) > 0. Let ψ be a positive function such that lim
t→0+

t · ψ(t) = 0

and lim
t→0+

h(t) · ψ(t) = ∞. We build S as {b− log2(ψ−1(2k))c : k ∈ N}. It can be seen that, with this

definition, |Sc ∩N| =∞ and lim
k→∞

2kh(2−nk ) =∞. Let ν be a probability measure with support in E such

that each interval I ∈ Dnk has measure O(2−k). Let I be an interval of length r small and let k be an
integer such that 2−nk ≥ r > 2−nk+1 . We define J as the interval of length 2−nk and the same centre as I .
Therefore,

ν(I ) ≤ ν(J) ≤ O(1) · ν(I
nk+1

j ) = O(1) · 2−k−1 < O(1) h(2−nk+1) ≤ O(1) h(r) = O(1) h(|I |),

as lim
k→∞

2kh(2−nk ) =∞. Consequently, Hh(E ) = lim
ε→0

inf
{∑

j
h(|Ij |) : E ⊂

⋃
Ij , |Ij | ≤ ε

}
> 0.
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Zygmund measures

We will introduce a generalisation of porosity in order to prove that porous sets cannot be the support
of a nontrivial Zygmund measure.

Given a compact set K ⊂ R and a closed interval I , let us denote by I ∗ the biggest open interval in I ,
disjoint from K and satisfying 2|I ∗| ≤ |I |.

Definition 2.4. Let K ⊂ R be a compact set of zero Lebesgue measure. We say K is log-porous if

lim
ε→0

inf

∑
j≥1

|Ij | log

(
|Ij |
|I ∗j |

)
: K ⊂

⋃
j≥1

Ij , with pairwise disjoint interiors and |Ij | < ε

 = 0.

Theorem 2.5. A log-porous set cannot be the support of a Zygmund measure.

Theorem 2.6. There exists a log-porous compact set K such that it is nonporous and HΦ(K ) > 0, where Φ
is the function defined in (2).

It can be easily seen that porous sets are log-porous. Theorem 2.6 implies that Theorem 2.5 is not a
consequence of Makarov’s Theorem or Kaufman’s Theorem. In order to prove Theorem 2.5 we will need
the following result.

Proposition 2.7. Let f ∈ Λ∗. Then for any t ∈ (0, 1) and a, b ∈ R,

|(1− t)f (a) + tf (b)− f ((1− t)a + tb)| ≤ C‖f ‖∗ϕ(t)|b − a|,

where C is an absolute constant and ϕ(t) = t log 1
t if t ≤ 1/2 and ϕ(t) = ϕ(1− t) if t ≥ 1/2.

The proof of Proposition 2.7 can be found in [1].

Proof of Theorem 2.5. Let K ⊂ (0, 1) be a log-porous compact set. Let µ be a positive Zygmund measure
with support in K and let f be its distribution function. Given η > 0 small, there exists ε > 0 and a
covering by closed intervals {Ij} given by the definition of log-porosity, such that |Ij | < ε ∀j ≥ 1 and∑

j≥1 |Ij | log
( |Ij |
|I∗j |
)
< η.

Let us denote Ij = (aj , bj) and I ∗j = (cj , dj) ⊂ Ij . We define ρj =
|I∗j |
|Ij | and x =

cj−ρjaj
1−ρj =

dj−ρjbj
1−ρj . Note

that f (dj) = f (cj) since K ∩ (cj , dj) = ∅. By Proposition 2.7, we have

ρj |f (bj)− f (aj)| = |ρj f (bj)− ρj f (aj) + f (cj)− f (dj) + (1− ρj)f (x)− (1− ρj)f (x)|

≤ |ρj f (bj) + (1− ρj)f (x)− f (dj)|+ |ρj f (aj) + (1− ρj)f (x)− f (cj)|

≤ Cϕ(ρj)(bj − x) + Cϕ(ρj)(aj − x) = Cϕ(ρj)(bj − aj),

and, as a consequence, |f (bj) − f (aj)| ≤ C |bj − aj | 1
ρj
ϕ(ρj) = C |bj − aj | log

(
1
ρj

)
= C |Ij | log

( |Ij |
|I∗j |
)
, since

ρ ≤ 1
2 . Therefore µ(K ) = f (1)− f (0) ≤ C

∑
j≥1 |Ij | log

( |Ij |
|I∗j |
)
< C · η.

As η is arbitrarily small, we conclude that µ(K ) = 0 and µ must be the trivial measure.

http://reportsascm.iec.cat4
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Proof of Theorem 2.6. Let us consider, in [0, 1], the function defined by

ϕ(t) =

0 if t = 0,
t

4
√

log2(2/t)
if t ∈ (0, 1].

Note that ϕ is increasing and convex, therefore 2ϕ(2−n−1) < ϕ(2−n).

The compact will be constructed inductively in a similar way as the Cantor set. Let E0 = I 0
1 = [0, 1] and

let En =
⋃2n

j=1 I nj . For each closed interval I nj , we consider I n+1
2j−1 and I n+1

2j the two closed corner intervals

of I nj of length ϕ(2−n−1). Then we construct En+1 as En+1 =
⋃2n+1

j=1 I n+1
j . Finally, we set K =

⋂
n≥1 En.

Firstly, we will see that K is log-porous. For n ≥ 0, let us consider the covering of K given by
⋃2n

j=1 I nj .

By construction, for each I in the covering, the length of I ∗ is ϕ(2−n)− 2ϕ(2−n−1). As a result,

2n∑
j=1

|I nj | log

(
|I nj |
|I n∗j |

)
= 2nϕ(2−n) log

(
ϕ(2−n)

ϕ(2−n)− 2ϕ(2−n−1)

)
=

1
4
√

n + 1
log

(
4
√

n + 2
4
√

n + 2− 4
√

n + 1

)

which goes to 0 as n tends to infinity. Now we will see that HΦ(K ) > 0. Let us define λ0 = 1 and
λn = 1

2λn−1(x) if x ∈ I nj for some j and λn = 0 otherwise. We consider the succession of measures dνn =

ϕ(2−n)λn dx , and we denote by ν the limit of νn. Note that ν is a positive probability measure with support
in K and such that ν(I nj ) = 2−n for all j .

By a similar argument as the one used in the proof of Theorem 2.3, we conclude that Hϕ−1(K ) > 0.
Since ϕ−1(t) = o(Φ(t)) as t → 0+, by the comparison lemma between Hausdorff measures (see [2, p. 60]),
we conclude that HΦ(K ) =∞.

In order to prove that K is nonporous, we assign, to each x ∈ K , a succession (δn(x)) of 0′s and 1′s
in the following way: if x ∈ I n2j−1 for some j , we set δn(x) = 0; if x ∈ I n2j , we set δn(x) = 1. Let E be the
set of x ∈ K such that there exists n0 = n0(x) such that, for n ≥ n0, δn(x) 6= δn+1(x).

We assume that K is porous with parameter 0 < ρ < 1 and consider the associated covering of K .
If x ∈ E , let I be the interval of the aforementioned covering containing x . We choose n ∈ N such that
ϕ(2−n−1) < |I | ≤ ϕ(2−n). By election of x , the length of the biggest interval contained in I and disjoint
of K is less than ϕ(2−n+2)− 2ϕ(2−n+1). Therefore, ρϕ(2−n−1) ≤ ρ · |I | ≤ ϕ(2−n+2)− 2ϕ(2−n+1) and, as
a result

ϕ(2−n+2)− 2ϕ(2−n+1)

ϕ(2−n−1)
≥ ρ.

We have reached a contradiction, since the left expression goes to 0 as n tends to infinity.

3. An approach to the characterisation of the sup-
ports of Zygmund measures

Our aim is to find a characterisation of the compact sets that support Zygmund measures, i.e., the compact
sets K for which sup{µ(K ) : supp(µ) ⊂ K , µ ≥ 0, ‖µ‖∗ ≤ 1} > 0, where µ is a Zygmund measure.

5Reports@SCM 7 (2022), 1–12; DOI:10.2436/20.2002.02.28.



Zygmund measures

To that end, we will approximate K as the union of closed dyadic intervals and we will determine the
maximum mass a fixed-norm Zygmund measure can have. We will use the following notation to denote
the dyadic intervals of length 2−n:

Dn =

{[
k

2n
,

k + 1

2n

) ∣∣∣∣ k ∈ {0, 1, ... , 2n − 1}
}

.

Lemma 3.1. Let K ⊂ (0, 1) be the union of 2−n-length closed dyadic intervals. Let µ be a positive measure
with suppµ ⊆ K and constant density over each interval in Dn. If the following condition holds, µ is a
Zygmund measure with support in K and ‖µ‖∗ ∼ C .

|µ(I )− µ(I ′)| ≤ C |I |, where I , I ′ ∈ Dk are adjacent and k ≤ n.

This lemma can be easily proven using a variation of the proof of Kahane’s Theorem and we will use
it to attempt to determine a geometrical characterisation of the compact sets that support a Zygmund
measure. With that goal, we shall introduce the concept of Z-2k sequences.

Definition 3.2. Let n ∈ N and 0 ≤ k ≤ n. A number sequence x1 x2 ... x2n−k is said to be Z-2k if the
following conditions hold. 

xj ≥ 0 ∀j ,

|xj − xj−1| ≤ 2k j = 2, ... , 2n−k ,

xj ≤ 2k j = 1, 2n−k .

Let K ⊆ [0, 1] be a compact set and let n ∈ N. Firstly, we will associate a density D(n)
n to each

interval I nj ∈ Dn in order for it to be a Z-1 sequence. Specifically, D(n)
n will be constructed as the

maximal Z-1 sequence such that if I nj ∩ K = ∅, then D(n)
n (I nj ) = 0. Secondly, we will associate, to

each interval I n−1
j ∈ Dn−1, the maximal density D(n)

n−1 such that the resulting sequence is Z-2 and that

D(n)
n−1(I n−1

j ) ≤ D(n)
n (I n2j) +D(n)

n (I n2j+1). Iterating this process we will obtain a density D(n)
0 ([0, 1]). The limit

of 2−nD(n)
0 ([0, 1]) as n → ∞ bounds the maximum mass a Zygmund measure defined on the intervals

of Dn that intersect K and with controlled ‖µ‖∗ can have.

Let us formally define the densities D(n)
k associated to each dyadic interval in Dk for k ≤ n. We start

by defining D(n)
n . Given an interval I nj ∈ Dn for j = 0, 1, ... , 2n − 1, we define

D−n (I nj ) =

{
0 if I nj ∩ K = ∅,
D−n (I nj−1) + 1 if I nj ∩ K 6= ∅,

and analogously,

D+
n (I nj ) =

{
0 if I nj ∩ K = ∅,
D+

n (I nj+1) + 1 if I nj ∩ K 6= ∅,

with the convention I n−1 =
[−1

2n , 0
)
, I n2n =

[
1, 1 + 1

2n

)
and D−n (I n−1) = D+

n (I n2n) = 0. Finally, we denote

D(n)
n (I nj ) = min{D−n (I nj ),D+

n (I nj )}.

http://reportsascm.iec.cat6
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Now we define Dn−k(I n−kj ) for each dyadic interval I n−kj ∈ Dn−k for 1 ≤ k ≤ n. To do so, let us consider

the two intervals J, J ′ ∈ Dn−k+1 such that J, J ′ ⊆ I n−kj . We denote

Sn−k(I n−kj ) = D(n)
n−k+1(J) +D(n)

n−k+1(J ′),

and we proceed as before, setting

D−n−k(I n−kj ) = min{D−n−k(I n−kj−1 ) + 2k , Sn−k(I n−kj )},

D+
n−k(I n−kj ) = min{D+

n−k(I n−kj+1 ) + 2k , Sn−k(I n−kj )},

with the convention D−n−k(I n−k−1 ) = D+
n−k(I n−k

2n−k ) = 0. Finally, we define

D(n)
n−k(I n−kj ) = min{D−n−k(I n−kj ), D+

n−k(I n−kj )}.

Hence, we built the densities D(n)
n ,D(n)

n−1, ... ,D(n)
0 . Finally, we define the Zygmund Capacity as

Cn(K ) = 2−nD(n)
0 ([0, 1]).

Let K ′ be the compact set formed by the union of the dyadic intervals in Dn which intersect K . By
construction, Cn(K ) is an upper bound to the mass of any Zygmund measure with support in K ′.

Proposition 3.3. For each compact set K ⊂ [0, 1], ∃ lim
n→∞

Cn(K ).

Proof. By construction, Cn(K ) ≥ 0 ∀n. In order to prove that the limit exists, it suffices to see that the
succession (Cn(K ))n is decreasing. Let I nj ∈ Dn be an interval such that I nj ∩K = ∅ and let I n+1

2j , I n+1
2j+1 be

the two intervals of Dn+1 contained in I nj . Clearly, I n+1
2j and I n+1

2j+1 are disjoint from K . Hence,

D(n)
n (I nj ) = 0 =⇒ D(n+1)

n (I nj ) = 0.

Alternatively, if I nj ∩ K 6= ∅, then D(n)
n (I nj ) = a > 0. Therefore, we conclude that D(n+1)

n (I nj−a) = 0 or

that D(n+1)
n (I nj+a) = 0. Consequently, D(n+1)

n (I nj ) ≤ 2a. This implies that D(n+1)
n (I nj ) ≤ 2D(n)

n (I nj ) for all j ,

so D(n+1)
0 ([0, 1]) ≤ 2D(n)

0 ([0, 1]). As a consequence, Cn+1(K ) ≤ Cn(K ).

Theorem 3.4. Let K ⊆ [0, 1] a compact set. If lim
n→∞

Cn(K ) = 0, K cannot be the support of a nontrivial

Zygmund measure.

Proof. Let µ be a Zygmund measure with support in K . We will prove that µ must be the trivial measure.
Let us assume, without loss of generality, that ‖µ‖∗ ≤ 1. Given n ∈ N, let 0 ≤ k ≤ n be an integer. We

will prove by induction on k that µ(I n−kj ) ≤ 2−nD(n)
n−k(I n−kj ) for all I n−kj ∈ Dn−k .

It is clear that if I n−kj ∩ K = ∅, the inequality holds, so let us assume that I n−kj ∩ K 6= ∅.

Firstly, we will show that the inequality holds for k = 0. Let I nj ∈ Dn be a dyadic interval and let
I nj−` ∈ Dn be the closest interval to I nj such that I nj−` ∩K = ∅. Note that −2n + j ≤ ` ≤ j + 1 and we can
assume, without loss of generality that ` > 0. Therefore,

µ(I nj )

|I nj |
≤ 1 +

µ(I nj−1)

|I nj |
≤ 1 + 1 +

µ(I nj−2)

|I nj |
≤ · · · ≤ `+

µ(I nj−`)

|I nj |
= ` = D(n)

n (I nj )
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and µ(I nj ) ≤ 2−nD(n)
n (I nj ). Let us assume the inequality holds for n− k + 1 where 1 ≤ k ≤ n is fixed, and

we will prove it holds for n − k . On one hand we have

µ(I n−kj ) = µ(I n−k+1
2j ) + µ(I n−k+1

2j+1 ) ≤ 2−n(D(n)
n−k+1(I n−k+1

2j ) +D(n)
n−k+1(I n−k+1

2j+1 )),

since µ is a measure and I n−kj = I n−k+1
2j ∪ I n−k+1

2j+1 . On the other hand,

µ(I n−kj )

|I n−kj |
≤ 1 +

µ(I n−kj−1 )

|I n−kj |
=⇒ µ(I n−kj ) ≤ 2−n+k + µ(I n−kj−1 ).

Analogously, µ(I n−kj ) ≤ 2−n+k + µ(I n−kj+1 ). As both of these inequalities hold for all j , clearly

µ(I n−kj ) ≤ 2−n min{D(n)
n−k+1(I n−k+1

2j ) +D(n)
n−k+1(I n−k+1

2j+1 ),D−n−k(I n−kj−1 ) + 2k ,D+
n−k(I n−kj+1 ) + 2k}.

Therefore, µ(I n−kj ) ≤ 2−nD(n)
n−k(I n−kj ) which implies that µ([0, 1]) ≤ 2−nD(n)

0 ([0, 1]) = Cn(K )
n→∞−−−→ 0.

Consequently, since K ⊂ [0, 1] we have µ(K ) = 0 and, as a result, µ ≡ 0.

Conjecture 3.5. A compact set K is the support of a nontrivial Zygmund measure if and only if

lim
n→∞

Cn(K ) > 0.

By Theorem 3.4, it suffices to prove that if the limit of Cn(K ) as n tends to infinity is positive,
then there exists a nontrivial Zygmund measure with support in K . In order to do so, we will define a
succession of Zygmund measures µn with mass equal to Cn(K ). As lim

n→∞
‖µn‖ = limn→∞ Cn(K ) > 0, the

limit µ = lim
n→∞

µn will be well-defined. Choosing appropriately the support of µn, µ will have support in K .

Furthermore, if µn are uniformly bounded, then µ will be a Zygmund measure.

Given an integer n we denote D(n)
0 := D(n)

0 ([0, 1]). By construction, D(n)
0 ≤

2n−1∑
j=0
D(n)

n (I nj ) where

I nj ∈ Dn. If both expressions are equal, then considering

dµn =
2n−1∑
j=0

D(n)
n (I nj )χI nj

dx ,

we have that µn is a Zygmund measure. Let us assume, that D(n)
0 <

∑2n−1
j=0 D

(n)
n (I nj ). We want to find a

Zygmund measure µn with mass 2−nD(n)
0 , constant over dyadic intervals I nj and such that µn(I nj ) = 0 if I nj

is disjoint from K .

Therefore we aim to determine some numbers d0, ... , d2n−1 ≥ 0 such that
2n−1∑
j=0

dj = D(n)
0 , that

dµn =
2n−1∑
j=0

djχI nj
dx (3)

is a Zygmund measure and that dj = 0 if I nj ∩ K = ∅. Finding a technique to determine this numbers
would end the proof, since the limit of µn would be a positive Zygmund measure with support in K .
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Therefore, we will try to distribute D(n)
0 between d0, ... , d2n−1 ≥ 0 in such a way that the aforementioned

conditions are met. Clearly, in order for µn as defined in (3) to be a Zygmund measure with ‖µ‖∗ ≤ 1,

the sequence d0d1 ... d2n−1 must be Z-1. By construction, the sequence D(n)
n (I n0 ) ...D(n)

n (I n2n−1) is the
maximal Z-1 sequence such that the j-th number is zero if I nj ∩ K = ∅. As a result, we have dj ≤
D(n)

n (I nj ) for all j . Let us denote d1
j = d2j + d2j+1. Then, in order for (3) to be a Zygmund measure,

the sequence d1
0 ... d1

2n−1−1 must be Z-2 and less than D(n)
n−1(I n−1

0 ) ...D(n)
n−1(I n−1

2n−1−1
). Denoting, inductively,

dk
j = dk−1

2j + dk−1
2j+1 for 1 ≤ k ≤ n we conclude that the sequences dk

0 ... dk
2n−k−1

must be Z-2k and less

than D(n)
n−k(I n−k0 ) ...D(n)

n−k(I n−k
2n−k−1

). Note that dn
0 = D(n)

0 .

We shall say that d0, ... , d2n−1 constitute a distribution of D(n)
0 if they meet the following conditions:

• dj ≥ 0 for all j ,

•
2n−1∑
j=0

dj = D(n)
0 ,

• dk
0 ... dk

2n−k−1
must be a Z-2k sequence for all k = 0, ... , n,

• dk
j ≤ D

(n)
n−k(I n−kj ) for all k = 0, ... , n and for all j = 0, ... , 2n−k − 1,

where d0
j = dj for all j .

If d0, ... , d2n−1 is a distribution of D(n)
0 ([0, 1]), then the measure defined in (3) meets the hypothesis

of Lemma 3.1. This implies that µn is a Zygmund measure with mass ‖µn‖ = 2−nD(n)
0 ([0, 1]) = Cn(K ).

First of all, we are going to prove that given dk
j for j = 0, ... , 2n−k −1 that meet certain conditions, we

can determine dk−1
j for j = 0, ... , 2n−k+1− 1. After that, we will state a distribution method that appears

to guarantee that the conditions are met, although we have not been able to prove this result. To that end,
let us introduce the concept of sequence of corrected sums.

Definition 3.6. Let n ∈ N and 1 ≤ k ≤ n. Given an integer Z-2k−1 sequence x1 x2 ... x2n−k+1 , we determine
its sequence of corrected sums t1 t2 ... t2n−k as:

• Firstly, let us consider the integer sequence s1 s2 ... s2n−k defined as sj = x2j−1 + x2j ∀j .

• Secondly, let e1 e2 ... e2n−k and d1 d2 ... d2n−k be two integer sequences constructed as follows:
e1 = min{s1, 2k},
d2n−k = min{s2n−k , 2k},
ej = min{sj , ej−1 + 2k} j = 2, ... , 2n−k ,

dj = min{sj , dj+1 + 2k} j = 1, ... , 2n−k − 1.

• Finally, we define the integer sequence t1 t2 ... t2n−k as tj = min{ej , dj} ∀j .

Note that, given a sequence Z-2k−1, its sequence of corrected sums will be Z-2k .
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Lemma 3.7. Given n ∈ N and 1 ≤ k ≤ n, let x1 x2 ... x2n−k+1 be an integer Z-2k−1 sequence and let
us denote by t1 t2 ... t2n−k its sequence of corrected sums. Let r1 r2 ... r2n−k be an integer Z-2k sequence
with rj ≤ tj ∀j . Then there exists y1 y2 ... y2n−k+1 an integer Z-2k−1 sequence satisfying yj ≤ xj for
j = 1, ... , 2n−k+1 and y2j−1 + y2j = rj for j = 1, ... , 2n−k , if the following conditions are met{

−x2j−3 − 2k−1 ≤ rj − rj−1 ≤ x2j + 2k−1,

rj − rj−1 ≤ 2k + x2j − y2j−4

for all j = 2, ... , 2n−k .

Notation. Let us introduce the following notation: aj = x2j − x2j−1, δj = x2j+1 − x2j , bj = sj − rj and
b̃j = xj − yj .

Proof. We will construct the sequence y1 y2 ... y2n−k+1 as yj = xj − b̃j where b̃2j−1 + b̃2j = bj . We will
take b̃j ∈ N, as a result, yj ≤ xj , yj ∈ N and y2j−1 + y2j = sj − bj = rj . Consequently, we only need
to prove that there exists b̃j with the previous definition such that y1 y2 ... y2n−k+1 satisfies yj ≥ 0 ∀j and
|yj − yj−1| ≤ 2k−1 for j = 2, ... , 2n−k+1.

Note that b̃2j−1 needs to satisfy the following conditions:

(i) b̃2j−1 ∈ I0 = [bj − x2j , x2j−1] since yj ≥ 0 implies b̃2j−1 ≤ x2j−1 and b̃2j = bj − b̃2j−1 ≤ x2j .

(ii) b̃2j−1 ∈ I1 = [0, bj ] since yj ≤ xj implies b̃2j−1 ≥ 0 and b̃2j−1 = bj − b̃2j .

(iii) b̃2j−1 ∈ I2 =
[⌈bj−aj

2

⌉
− 2k−2,

⌊bj−aj
2

⌋
+ 2k−2

]
, where b`c and d`e denote the floor and ceiling of `

respectively. This condition derives from the inequality |y2j − y2j−1| ≤ 2k−1.

(iv) b̃2j−1 ∈ I3 = [δj−1 + b̃2j−2 − 2k−1, δj−1 + b̃2j−2 + 2k−1]. This condition originates derives from the
fact that

|y2j−1 − y2j−2| = |x2j−1 − b̃2j−1 − x2j−2 + b̃2j−2| = |δj−1 − b̃2j−1 + b̃2j−2| ≤ 2k−1.

The remainder of the proof consists on checking that I0 ∩ I1 ∩ I2 ∩ I3 6= ∅ when the conditions of the
lemma are met.

Notation. Let us denote by Ij the intersection of the aforementioned four intervals of the j-th step. By
construction, the endpoints of Ij are integer, and we will denote them by Ij = [b̃2j−1,m, b̃2j−1,M ], with

b̃2j−1,m = max

{
bj − x2j , 0,

⌈
bj − aj

2

⌉
− 2k−2, δj−1 + b̃2j−2 − 2k−1

}
,

b̃2j−1,M = min

{
x2j−1, bj ,

⌊
bj − aj

2

⌋
+ 2k−2, δj−1 + b̃2j−2 + 2k−1

}
.
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Note that Lemma 3.7 implies that Ij 6= ∅. As a result, b̃2j−1,m ≤ b̃2j−1,M if the conditions are met.
Let b̃2j−1 ∈ Ij be an integer which minimises the distance2

d(b̃2j−1) = max{|bj − aj − 2b̃2j−1|, |y2j−2 − x2j−1 + b̃2j−1|}

subject to the restriction

δj + bj − b̃2j−1 + 2k−1 ≥ min

{
x2j+1, bj+1,

⌊
bj+1 − aj+1

2

⌋
+ 2k−2, δj + bj − b̃2j−1,w + 2k−1

}
= b̃2j+1,M

if rj+1 ≤ rj+2; or subject to the restriction

δj+bj−b̃2j−1−2k−1 ≤ max

{
bj+1 − x2j+2, 0,

⌈
bj+1 − aj+1

2

⌉
− 2k−2, δj + bj − b̃2j−1,w − 2k−1

}
= b̃2j+1,m

if rj+1 > rj+2, where

b̃2j−1,w =

{
b̃2j−1,M if rj ≤ rj+1,

b̃2j−1,m if rj > rj+1.

If j = 2n−k , the restriction to be satisfied is x2j − bj + b̃2j−1 ≤ 2k−1.

It can be seen easily that the aforementioned restrictions and Lemma 3.7 guarantee that the intersection
of the intervals will not be empty.

Given two sequences rj and xj that satisfy the hypothesis of Lemma 3.7, we apply the aforemention

method to obtain an integer sequence, denoted by b̃
(e)
j . Then we build a sequence symbolised by y (e), as

y
(e)
j = xj − b̃

(e)
j .

Let r ′j = r2n−k ... r2r1 and x ′j = x2n−k+1 ... x2x1, be the inverted sequences rj and xj respectively. Clearly
both sequences meet the conditions of Lemma 3.7. Applying the previously mentioned method, we obtain

another integer sequence, b̃
(d)
j . Then, we build the sequence y (d), as y

(d)
j = xj − b̃

(d)

2n−k+1−j .

Note that y (e) and y (d) might not be Z-2k−1 sequences, however, the following linear combination will
be. We define yj as


y2j−1 =

y
(e)
2j−1 + y

(d)
2j−1

2

y2j =
y

(e)
2j + y

(d)
2j

2

if (y
(e)
2j−1 + y

(d)
2j−1) ≡ 0 (mod 2),


y2j−1 =

y
(e)
2j−1 + y

(d)
2j−1 + 1

2

y2j =
y

(e)
2j + y

(d)
2j − 1

2

if (y
(e)
2j−1 + y

(d)
2j−1) ≡ 1 (mod 2) and ∆1 < ∆2,


y2j−1 =

y
(e)
2j−1 + y

(d)
2j−1 − 1

2

y2j =
y

(e)
2j + y

(d)
2j + 1

2

if (y
(e)
2j−1 + y

(d)
2j−1) ≡ 1 (mod 2) and ∆1 ≥ ∆2,

2If j = 1 we take y2j−2 = 0.
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where

∆1 =max

{∣∣∣∣∣y
(e)
2j−1 + y

(d)
2j−1 + 1

2
− y2j−2

∣∣∣∣∣ ,

∣∣∣∣∣y
(e)
2j + y

(d)
2j − 1

2
−

y
(e)
2j−1 + y

(d)
2j−1 + 1

2

∣∣∣∣∣ ,

∣∣∣∣∣y
(e)
2j+1 + y

(d)
2j+1

2
−

y
(e)
2j + y

(d)
2j − 1

2

∣∣∣∣∣
}

,

∆2 =max

{∣∣∣∣∣y
(e)
2j−1 + y

(d)
2j−1 − 1

2
− y2j−2

∣∣∣∣∣ ,

∣∣∣∣∣y
(e)
2j + y

(d)
2j + 1

2
−

y
(e)
2j−1 + y

(d)
2j−1 − 1

2

∣∣∣∣∣ ,

∣∣∣∣∣y
(e)
2j+1 + y

(d)
2j+1

2
−

y
(e)
2j + y

(d)
2j + 1

2

∣∣∣∣∣
}

.

Although this method yielded promising numerical results, we have not been able to prove that this
method of distribution guarantees that the conditions of Lemma 3.7 are always met.
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Bijective enumeration of constellations in higher genus

1. Introduction

A map M of genus g is a proper embedding of a graph in Sg , the torus with g holes, such that the maximal
connected components of Sg \M are contractible. These components are called faces. Multiple edges and
loops are allowed. Maps are considered up to orientation preserving homeomorphisms. A unicellular map
is a map with a single face.

Maps of genus 0 are called planar maps. They receive this name because embedding graphs in the
sphere or in the plane is essentially the same. The stereographical projection, for instance, can produce
a plane embedding from a sphere embedding. All the faces of a planar map embedded in the plane are
contractible except for one, the exterior face, which is homeomorphic to the complement of a disk.

A corner of a map is a couple of consecutive edges around a vertex. Equivalently, a corner can be seen
as an incidence between a face and a vertex. The degree of a vertex or face is its number of corners.

A rooted map is a map with a marked corner, which is called the root corner (or, simply, root). This
root corner naturally defines a root vertex and a root face. The maps we consider here will always be rooted.

If a map is rooted, we have a notion of clockwise and counterclockwise when following contractible
cycles. Precisely, we say that a tour around a contractible cycle is clockwise (resp. counterclockwise) if the
root face lies on the left (resp. right) side of it.

In maps, edges join two (possibly equal) vertices and separate two (possibly equal) faces. Thus, given
a map M, we can define its dual map M∗ in the following way. The faces (resp. vertices) of M become the
vertices (resp. faces) of M∗ and the dual of an edge e joining vertices v1 and v2 and separating faces f1
and f2 is an edge e∗ joining vertices f ∗1 and f ∗2 and separating faces v∗1 and v∗2 . Note that the dual of a
corner is “itself” (i.e., the same vertex-face incidence) and that dualization is involutive: (M∗)∗ = M.

Figure 1 contains an example of a planar map and its dual. Figure 2 contains an example of a map on
the torus with some additional structure that is presented later. Maps on the torus are drawn on a square
the parallel sides of which have to be identified.

Figure 1: A planar map and its dual.
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Maps are fundamental combinatorial objects that appear in many other fields of mathematics such
as algebra and mathematical physics. The enumeration of planar maps began with the work of Tutte in
the sixties [10]. In his work, Tutte enumerated a variety of families of maps, obtaining remarkably simple
formulas. For example, he showed that the number of rooted planar maps with n edges is

2(2n)!3n

n!(n + 2)!
.

His methods are based on the recursive combinatorial decomposition of maps and the equations obtained
usually require the introduction of additional parameters called catalytic variables. In the late eighties, these
techniques were extended to maps on surfaces of higher genus by Bender and Canfield [1, 2].

The simplicity of the formulas obtained by Tutte called for bijective demonstrations. Cori and Vauquelin
gave the first bijective proof of the enumeration of planar maps in 1981 [7]. After them, many others
continued this work, starting with Schaeffer, who gave numerous bijective constructions in the late nineties.
In 1997, he introduced blossoming trees to formulate a new bijection for planar maps [9]. In 2000, Bousquet-
Mélou and Schaeffer gave a bijection between planar constellations and some blossoming trees, which
allowed them to prove enumerative formulas for constellations [3]. It should be mentioned that there
is a second trend of bijections of maps based on trees decorated with some integers that encode metric
properties of the maps. These bijections were applied to planar constellations in [4] and were later extended
to higher genus in [5].

In positive genus, the natural equivalent of trees are unicellular maps. Chapuy, Marcus and Schaeffer
introduced in [6] some techniques to analyse these unicellular maps by decomposing them into schemes
with branches. In 2019, Lepoutre gave a blossoming bijection for bicolorable maps of any genus, which are
a particular case of constellations [8].

Inspired by the work of Lepoutre, we reformulate the planar blossoming bijection of [3] in a way that
naturally extends to higher genus. Thus, we obtain a blossoming bijection between constellations and
some blossoming unicellular maps that also extends the bijection of [8]. Using this bijection, we are able
to enumerate a particular case of constellations on the torus.

2. Constellations and m-bipartite unicellular maps

2.1 Constellations

Definition 2.1. Let m ≥ 2. We say that a map whose faces are bicolored (black and white) is an m-
constellation (Figure 2a) if

(i) adjacent faces have different colors,

(ii) black faces have degree m and white faces have degree mi for some integer i ≥ 1 (which can be
different among white faces),

(iii) vertices can be labeled with integers in {1, 2, ... , m} in such a way that turning clockwise around any
black face the labels read 1, 2, ... , m.
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A rooted constellation is a constellation that is rooted on a white corner. The first edge found when
turning counterclockwise around the root vertex starting from the root corner is called the root edge. Note
that the root corner can be recovered from the root edge, so it is equivalent to root a constellation on a
white corner or on an edge.

The dual of an m-constellation is called an m-Eulerian map (Figure 2b). The dual of a rooted m-con-
stellation (resp. rooted m-Eulerian map) is a rooted m-Eulerian map (resp. rooted m-constellation) with
the “same” root. In other words, the root vertex, the root face and the root edge become, respectively,
the root face, the root vertex and the root edge through dualization.

0

1

2

1

21

2

3

1

2

(a) A rooted 3-constellation of genus 1 endowed with its
canonical orientation and labelling. The root is pointed
by the double arrow.

(b) A rooted 3-constellation of genus 1 (blue) with its
dual rooted 3-Eulerian map (black). Their roots are
pointed by the double arrows.

Figure 2: A constellation and its dual map.

Consider a rooted m-constellation. The canonical orientation of its edges is the orientation for which
its edges turn clockwise around black faces. When endowed with this orientation, the canonical labelling
(Figure 2a) of its vertices is obtained by labelling every vertex with the length of the shortest oriented path
to it from the root vertex.

This orientation and labelling was introduced by Bouttier, Di Francesco and Guitter in [4] for planar
constellations to define what is now known as the BGD bijection.

2.2 Blossoming unicellular maps

Blossoming bijections were introduced by Schaeffer in [9] to put some classes of planar maps in bijection
with decorated trees. These bijections consist in selecting a canonical spanning tree (or, more generally, a
canonical spanning submap) and cut into two half-edges the edges not belonging to it. The resulting map
is said to be a blossoming map, which can be closed back into the original map.
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A blossoming map is a map with stems (that can be viewed as half-edges) attached to its vertices.
There are two types of stems: outstems, which are outgoing stems, and instems, which are ingoing stems.
Stems separate corners as if they were edges, which means that they count towards the (total) degree of
their vertex. We will use the term inner degree when we want to ignore stems, i.e., when we only count
the number of incident edges to a vertex (loops are counted twice).

A rooted blossoming map is a blossoming map with a marked instem, which is called the root (instem).
The vertex to which the root is attached is called the root vertex and the face incident to the root is called
the root face. The corner on the right side of the root is called the root corner.

From now on we only consider blossoming maps that are unicellular.

The good orientation of a rooted unicellular blossoming map is the orientation for which every edge
is, first, followed backwards and, then, forwards in tour around the unique face starting at the root corner.
Note that it does not matter whether the face is followed clockwise or counterclockwise.

Given a rooted unicellular blossoming map which has m more instems than outstems, we can label its
corners in the following way (Figure 3a). We make a counterclockwise tour around its unique face starting
at the first corner after the root corner. Along this tour, we will visit every corner once and we will label it
with the value of a counter that starts at m − 1, increases by 1 every time we encounter an outstem and
decreases by 1 every time we encounter an instem. The result of this procedure is called the good labelling
of the unicellular blossoming map.

We say that an edge or stem increases (resp. decreases) by d if the value of its left label(s) minus the
value of its right label(s) is d (resp. −d). Observe that, since there are m more instems than outstems,
the last corner to label, which is the root corner, has good label 0.

2.3 m-bipartite unicellular maps

In [3], Bousquet-Mélou and Schaeffer define some objects called m-Eulerian trees and they construct a
bijection between them and planar constellations. Here, we give a generalization of these objects to higher
genus (m-bipartite unicellular maps) that we will show to be in bijection with constellations of higher genus.

Definition 2.2. Let m ≥ 2. We say that a rooted unicellular blossoming map with m more instems than
outstems and whose vertices are bicolored is an m-bipartite unicellular map (Figure 3a) if

(i) neighbouring vertices have different colors, instems are attached to white vertices and outstems are
attached to black vertices,

(ii) black vertices have degree m,

(iii) white vertices have degree mi for some integer i ≥ 1 (which can be different among white vertices),

and, when endowed with its good labelling,

(iv) the edges whose origin is a black vertex either decrease by 1 or increase by m − 1,

(v) the edges whose origin is a white vertex decrease by m − 1.
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Given an m-bipartite unicellular blossoming map, consider the cyclic word formed by its stems in the
order they appear in a counterclockwise tour around the face. Outstems are represented by the letter o
and instems are represented by the letter i . Now we match letters o and i as if they were opening and
closing parentheses, respectively. First, every letter o immediately followed by a letter i is matched with it.
Then, all matched letters are removed and this procedure is repeated until no more matchings are possible
(Figure 3b). Since there are exactly m more instems than outstems, m instems remain unmatched. We
call these instems single. Note that the matching described is the only possible one, since, in a correct
parenthesis word, an opening parentheses next to a closing one always have to be matched and can be
ignored from that point on.

An m-bipartite unicellular map is well-rooted if its root instem is single. Well-rootedness can be char-
acterized in the following way.

Proposition 2.3. An m-bipartite unicellular map U is well-rooted if and only if its good labels are non
negative.

3. The bijection between m-constellations and m-
bipartite unicellular maps

In this section we present our main result:

Theorem 3.1. Rooted m-constellations of genus g with di white faces of degree mi are in bijection with
well-rooted m-bipartite unicellular maps of genus g with di white vertices of degree mi.

3.1 The closure Φ

We first describe how a well-rooted m-bipartite unicellular map can be closed to obtain an m-Eulerian map.

Definition 3.2. Let U be a well-rooted m-bipartite unicellular map. Let r be its root vertex. We define
the closure Φ(U) of U in the following way (Figure 3).

First, every pair of matched stems b, l is connected to form a complete edge. The fact that the matched
stems of U form a valid parentheses word ensures that these new edges can be drawn without intersections.

After this, there are m unmatched instems, including the root. Place a black vertex s with m outstems
attached to it in the unique face and connect each of the outstems to a different unmatched instems. It is
clear that this can also be done without intersections.

The final result, Φ(U), is a map. We choose to root it on the same corner as U or, equivalently, on
the edge joining r and s.

Lemma 3.3. The closure Φ(U) of a well-rooted m-bipartite unicellular map U of genus g with di white
vertices of degree mi is a rooted m-Eulerian map of genus g with di white vertices of degree mi. Moreover,
the good labelling of the corners of U corresponds to the canonical labelling of the faces of Φ(U).

Proof sketch. The rules of good labels around stems ensure that the closure is a rooted m-Eulerian map.
Moreover, the canonical labels are at least as large as the good ones because when turning clockwise around
black vertices the good labels either increase by one or decrease by m− 1, and the equality holds because
there is a path from the root face to any other face that crosses only edges created by joining stems.
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Figure 3: The closure of a well-rooted 3-bipartite unicellular map.

3.2 The opening Ψ

Here we do the inverse transformation, that is, starting from a rooted m-Eulerian map, cut some of its
edges into stems so that the result is a well-rooted m-bipartite unicellular map.
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Definition 3.4. Let M be a rooted m-Eulerian map. We define its opening Ψ(M) in the following way
(Figure 4). First, consider the dual map C of M, which is a rooted m-constellation. Endow C with its
canonical orientation and labelling and take its leftmost Breadth-First Search (BFS) exploration tree T .
For every edge of M whose dual belongs to T , cut it into two stems: an instem attached to the white
vertex and an outstem attached to the black one. Finally, cut the root edge and remove s.

We root the result of this, Ψ(M), at the instem created when cutting the root edge.
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Figure 4: The opening of a rooted 3-Eulerian map.
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Lemma 3.5. The opening Ψ(M) of a rooted m-Eulerian map M of genus g with di white vertices of
degree mi is a well-rooted m-bipartite unicellular map of genus g with di white vertices of degree mi.
Moreover, the canonical labelling of M corresponds to the good labelling of Ψ(M) and

Φ(Ψ(M)) = M.

Proof sketch. The only difficulty here is to show that, after the opening, there can be no edge oriented
from white to black that increases by 1. If there was one such edge, the leftmost BFS tree would have
seen, first, its left side and, then, its right side, which would be a contradiction.

So far we have shown that the closure of a well-rooted m-bipartite unicellular map is a rooted m-Eulerian
map and that the opening of a rooted m-Eulerian map is a well-rooted m-bipartite unicellular map whose
closure is the original map. To show that Φ and Ψ are inverse operations and, thus, to prove Theorem 3.1,
we just need the following lemma.

Lemma 3.6. Let U be a well-rooted m-bipartite unicellular map. Then,

Ψ(Φ(U)) = U.

Proof sketch. Similarly, here one needs to prove that the duals of the edges that are created during the
closure by joining stems form a leftmost BFS tree.

Remark 3.7. The m-Eulerian trees described in [3] by Bousquet-Mélou and Schaeffer are the planar instances
of the m-bipartite unicellular trees we have introduced here. We use the same closing operation as they
do, but flipping the orientation of the surface, which amounts to swapping the notions of left-right and
clockwise-counterclockwise. Thus, when we restrict our bijection to the sphere, we recover their bijection.

Remark 3.8. In [8], Lepoutre gives a bijection between bicolorable maps of arbitrary genus and an adequate
family of blossoming unicellular maps. It is easy to convince oneself that bicolorable maps are, in fact,
2-Eulerian maps whose black vertices have been replaced by a single edge connecting their two white
neighbours (Figure 5).

(a) A planar Eulerian map. (b) A planar 2-Eulerian map.

(c) The dual map of 5a. (d) The dual map of 5b: a planar
2-constellation.

Figure 5: The relation between bicolorable maps and 2-Eulerian maps.
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In his bijection, Lepoutre opens bicolorable maps in a way that he shows to be equivalent to the following
one. First, take the dual of the bicolorable map, which is a bipartite map, and endow it with its geodesic
orientation. Then, consider the leftmost BFS exploration tree of this oriented bipartite map and, finally, cut
all the edges of the bicolorable map whose dual does not belong to the tree. This is essentially the same
way in which we open 2-Eulerian maps: the difference between our canonical orientation of 2-constellations
(we orient vertices clockwise around black faces) and Lepoutre’s geodesic orientation of the bipartite map
is explained by the fact that he has collapsed the black faces of the 2-constellation into edges to obtain the
bipartite map. Therefore, we can say that our bijection also generalizes the one given by Lepoutre in [8].

4. Rerooting an m-bipartite unicellular map

After Theorem 3.1 has been established, one can try to enumerate rooted constellations by enumerating
well-rooted m-bipartite unicellular maps.

The first problem we run into when trying to count well-rooted m-bipartite unicellular maps is precisely
the fact that they are well-rooted. As Lepoutre explains in [8], well-rootedness is a global notion, since
it requires the positivity of all the good labels of a map. This complicates the task of counting these
objects and, thus, we would like to get rid of it. In order to do so, we use the technique of rerooting first
introduced in [9] and which was successfully used in [3] and [8]. Specifically, we provide an algorithm to
reroot a well-rooted map on any instem, which will later yield an enumerative relation between m-bipartite
unicellular maps and well-rooted m-bipartite unicellular maps.

Definition 4.1. Let U be a rooted m-bipartite unicellular map, let r be its root and let t be a distinguished
instem of U. We endow U with its good orientation and its good labelling.

The rerooting algorithm is defined as follows. If t = r , we do nothing. Otherwise, we first join r and t
to create an edge. This divides the single face of U into faces fL and fR , where fL is the one containing
the root corner of U. We then add m to all labels of fL and we reverse the orientation of all the edges that
separate fL and fR . Finally, we cut the edge joining r and t back into two instems and we swap the roles
of r and t: t becomes the root and r becomes the distinguished instem.

The rerooting procedure always produces a valid m-bipartite unicellular map. This is why we say that
these maps are stable under rerooting. Furthermore, it allows us to prove the following:

Proposition 4.2. m-bipartite unicellular maps with a distinguished single instem are in bijection with
well-rooted m-bipartite unicellular maps with a distinguished instem.

5. Enumeration of bipartite 3-face-colorable cubic
maps on the torus

In this section, we prove our second theorem:

Theorem 5.1. Bipartite 3-face-colorable cubic maps of genus 1 are enumerated by

C (z) =
T (z)3

(1− T (z))(1− 4T (z))2
,

where z marks the number of white vertices and T (z) is the unique generating function satisfying T (z) =
z + 2T (z)2. In particular, C (z) is a rational function of T (z).
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Bipartite 3-face-colorable cubic maps of genus 1 are 3-Eulerian maps of genus 1 whose white vertices
all have degree 3. This is a very particular case compared to the general m-constellations of arbitrary genus
for which we have built a bijection, but it allows for relatively simple calculations that can be done by hand.

Generating functions are formal power series whose n-th coefficient equals the number of objects of
size n in some combinatorial class. For example, if C is the class of rooted bipartite 3-face-colorable cubic
maps of genus 1, counted by their number of white vertices, then C (z) =

∑
n≥0 cnzn is their generating

function in the sense that there are exactly cn such maps with n white vertices. We use the Symbolic
Method to translate the relations between the combinatorial classes (classes of graphs in our setting) into
equations involving their generating functions.

Let O be the class of well-rooted 3-bipartite unicellular maps of genus 1 whose white vertices have
degree 3, counted by their number of instems. Since the number of instems of a map o ∈ O is equal to
the number of white vertices of its closure c ∈ C, C (z) = O(z).

Let U be the class of 3-bipartite unicellular maps of genus 1 whose white vertices have degree 3 counted
by their number of instems different from the root. By Proposition 4.2, we have the following.

Lemma 5.2. The generating functions of O and U satisfy the relation

O(t) = 3

∫ t

0
U(z) dz .

5.1 The pruned maps and their enumeration

We follow the framework introduced by Chapuy, Marcus and Schaeffer in [6] to study unicellular maps.

The extended scheme of a map u ∈ U is the map obtained by, first, removing all its stems and, then,
iteratively removing all its vertices of degree 1. This procedure only removes stems and treelike parts from
the map, so an extended map is also a unicellular map. In fact, any map u ∈ U can be decomposed into
an extended scheme and some attached stems and treelike parts.

An extended scheme can only have vertices of degree 2, which we call branch vertices, and vertices of
degree 3, which we call scheme vertices. The treelike parts can only be attached to white branch vertices.
In our setting, there are always exactly two scheme vertices and they are black.

Let T be the class of these attachable treelike parts, counted by their number of instems. For the sake
of simplicity, we will consider that a single instem is a treelike part and belongs to T . It is easy to see that
the generating function of T satisfies the following recursive relation:

T (z) = z + 2T (z)2.

Let u ∈ U be a 3-bipartite unicellular map whose white vertices have degree 3. Its pruned map p is
obtained by replacing all its treelike parts by instems. The treelike part containing the root is replaced by a
root instem. Let P be the class obtained by pruning every map in U . The pruned maps of P are counted
by their number of instems different from the root. Observe that, if we keep the good labels on the pruned
map, the rules of the labelling still apply. In other words, P ⊂ U .

Lemma 5.3. The generating functions of U , P and T satisfy the relation

U(z) =
∂T

∂z
P(T (z)).
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Proof sketch. Each stem in the pruned map is replaced by a tree and the root stem is replaced by a tree
with a marked leaf that becomes the new root.

We would now like to enumerate P.

The labelled scheme of a pruned map p ∈ P is obtained by removing all its branch vertices except for
the one where the treelike part containing the root was attached. The good labels of the remaining corners
are kept.

It is clear that labelled schemes are uniquely determined by the lowest label on each of its scheme
vertices (Figure 6a). There is, thus, a correspondance between labelled schemes and pairs (i , j) ∈ Z2.

0 2 j + 2

1
jj + 1

i

i+ 1

i+ 2

(a) A generic labelled scheme.

i i i i

i i

i i

i + 1 i + 1 i + 1 i + 1

i + 1 i + 1

i + 1 i + 1i + 1

i− 1

i− 1 i

i− 1i + 2 i + 2

i + 2

(b) The first step of a branch.

Figure 6: Counting the pruned maps.

The labelled scheme associated to the pair (i , j) will be denoted li ,j , and the subclass of pruned maps
that have li ,j as labelled scheme will be denoted Pi ,j . Given (i , j) ∈ Z2, we want to compute Pi ,j(z). To
do so, we replace every edge of li ,j by a valid branch whose labels agree with the labels of li ,j . A branch
starts at a black vertex. There are four ways to place the stems of the first two vertices (Figure 6b).

The generating functions of branches are obtained by using weighted Motzkin paths. Multiplying the
four branches in a given li ,j and summing over all pairs (i , j) gives the following:

P =
∑
i ,j∈Z

Pi ,j = · · · =
z2(2z − 1)

(z − 1)2(4z − 1)3
.

We can finally conclude the proof of Theorem 5.1:

C (z) = O(t) = 3

∫ t

0
U(z) dz = 3

∫ t

0

∂T

∂z
P(T (z)) dz

= 3

(∫ z

0
P(η) dη

)
|z=T (t)

=
T (z)3

(1− T (z))(1− 4T (z))2
.
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In view of Theorem 5.1, we can formulate the following conjecture.

Conjecture 5.4. Bipartite 3-face-colorable cubic maps of arbitrary genus are enumerated by a generating
function which is a rational function of T (z).

Since blossoming bijections in [8] produce enumerative results in which there is scheme by scheme
rationality, we hope that will also be the case for these maps.
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1. Introduction

In 1801, Gauss published his Disquisitiones Arithmeticae [10], which among many other topics study the
composition of binary quadratic forms. More specifically, he found a group law between the classes of binary
quadratic forms of a given discriminant. 200 years later, in his PhD thesis, Bhargava studied whether there
were higher analogues of this law that could help interpret other number rings and their class groups. He
did that by considering different-sized cubes of integers and the forms arising from them. Most notable
is his approach in [2] using 2 × 2 × 2 cubes of integers, which yield an elegant reinterpretation of Gauss
composition and allows to obtain higher composition laws. His work led to a bigger understanding of
parametrizations of quartic and quintic rings and the density of their discriminants.

The next obvious step would be to consider 3× 3× 3 cubes. In [3], it is explained that 3× 3× 3 cubes
give rise to a composition law on general ternary cubic forms, but this composition doesn’t directly give
information on the corresponding cubic rings. In fact, cubic rings are most naturally related to binary cubic
forms, obtained by 2× 3× 3 cubes. This is the explanation given by Bhargava to focus on 2× 3× 3 cubes
rather than on the 3× 3× 3 case.

The aim of this article is to explore the behaviour of 3× 3× 3 cubes in a more geometrical setting. We
will consider cubes with entries in some field K , which will give rise to genus one curves in the projective
plane, and we will see how there is an analogous group law satisfied by these curves.

This article will begin with a brief exposition Gauss’ composition and Bhargava’s work in 2×2×2 cubes.
We will later introduce concepts in arithmetic geometry that will be necessary for us later. This includes a
brief introduction to elliptic curves and more generally to genus one curves, and also Galois cohomology and
its relation to elliptic curves. We will conclude by explaining results in the aforementioned 3× 3× 3 cubes,
in parallel with the results in [4].

2. Gauss’ composition law and Bhargava cubes

Definition 2.1. A binary quadratic form is a polynomial of the form f (x , y) = ax2 + bxy + cy2, with
a, b, c ∈ Z. We say that f is primitive if gcd(a, b, c) = 1. The discriminant of a binary quadratic form is
defined to be D := b2 − 4ac.

Definition 2.2. We say that two binary quadratic forms f , g are equivalent if there exists a matrix
S = ( r s

t u ) ∈ SL2(Z) such that g(x , y) = f (rx + sy , tx + uy). We will denote this as f ∼ g .

It is not difficult to see that equivalence of binary quadratic forms is an equivalence relation, and that
any two equivalent binary quadratic forms have the same discriminant.

Definition 2.3. Let f , g be two primitive binary quadratic forms with the same discriminant. A binary
quadratic form h is a composition of f and g if the following conditions hold:

f (x , y) · g(z , w) = h(B1(x , y , z , w), B2(x , y , z , w));

p1q2 − p2q1 = f (1, 0);

p1r2 − p2r1 = g(1, 0);

where Bi (x , y , z , w) = pi xz + qi xw + ri yz + si yw (i = 1, 2) are two bilinear forms with integer coefficients.

Gauss famously proved that, in fact, composition gives a group law to the set of equivalence classes
primitive binary quadratic forms of fixed discriminant D. More precisely:
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Theorem 2.4 (Gauss). (i) Given two primitive binary quadratic forms f , g of given discriminant D,
there always exists a composition h of f and g. Moreover, this composition is unique and well-
defined up to equivalence, meaning:

(1) If h1, h2 are two compositions of f and g, then h1 ∼ h2.

(2) If hi is the composition of fi and gi for i = 1, 2, satisfying f1 ∼ f2 and g1 ∼ g2, then h1 ∼ h2.

(ii) The equivalence classes of primitive binary quadratic forms of fixed discriminant D constitute an
abelian group under composition.

(iii) The identity is given by

Qid,D(x , y) =


[

x2 − D

4

]
, if D ≡ 0 (mod 4),[

x2 + xy − D − 1

4

]
, if D ≡ 1 (mod 4),

where [f ] denotes the equivalence class of f .

There is a reinterpretation of Gauss composition due to Dirichlet, which relates the composition of
binary quadratic forms with the multiplication of fractional ideals in orders of number fields; see [6] for
more details.

We now present Bhargava’s reinterpretation of the Gauss composition law through 2× 2× 2 cubes.

Definition 2.5. A Bhargava cube is an element A ∈ Z2⊗Z2⊗Z2. If A is represented by (a, b, c , d , e, f , g , h)
under a basis of Z2 ⊗ Z2 ⊗ Z2, then it can visualized as:

e f

a b

g h

c d

This cube can be partitioned into two 2 × 2 matrices in three different ways, according to the three
orientations of the cube. Namely, the corresponding matrices are:

M1 =

[
a b
c d

]
, N1 =

[
e f
g h

]
;

M2 =

[
a c
e g

]
, N2 =

[
b d
f h

]
;

M3 =

[
a e
b f

]
, N3 =

[
c g
d h

]
.

Given any such partition, we may obtain a binary quadratic form through:

QA
i (x , y) = − det(Mi x − Ni y).

Under this setting, a natural question to ask is: how are these three binary quadratic forms related?
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Theorem 2.6 (Bhargava). Let A be a Bhargava cube giving rise to three primitive binary quadratic
forms Q1, Q2, Q3. Then,

(i) The forms Q1, Q2, Q3 have the same discriminant D.

(ii) The three forms satisfy
[Q1] + [Q2] + [Q3] = [Qid,D ],

where + corresponds to Gauss composition and Qid,D is the identity form defined in Theorem 2.4.

(iii) Conversely, given any three forms satisfying [Q1] + [Q2] + [Q3] = [Qid,D ], there exists a cube A giving
rise to [Q1], [Q2], [Q3] (which is unique modulo a suitable action of SL2(Z)).

Here, there is an action of Γ = (SL2(Z))3 on a cube A ∈ Z2 ⊗ Z2 ⊗ Z2. In terms of the partition, the
action of the i-th matrix ( r s

t u ) replaces (Mi , Ni ) for (rMi + sNi , tMi + uNi ).

3. Genus one curves

The main goal of this article will be to find an analogue to Theorem 2.6 but for 3 × 3 × 3 cubes. To do
that, we first need to introduce some concepts related to genus one curves.

3.1 Preliminaries in algebraic geometry

We will assume some familiarity with the basics of algebraic geometry. For further context, the reader may
wish to consult [9] or the first two chapters of [12].

Fix throughout a perfect field K with algebraic closure K . Let C ⊆ P2 be a curve, that is, the vanishing
locus of an irreducible homogeneous polynomial f (x , y , z) of degree d . We will denote by C (K ) the set of
K -points of C , and we will typically denote the K -points just by C .

Definition 3.1. The divisor group of C is the free abelian group generated by the K -points of C . In other
words, a divisor D of C is a formal sum

D =
∑

P∈C(K)

nPP,

where nP ∈ Z and nP = 0 for all but finitely many P. The degree of a divisor is defined by

deg D =
∑

P∈C(K)

nP .

Finally, a principal divisor is of the form

div f =
∑

P∈C(K)

ordP(f )P,

for some f ∈ K (C ).

The principal divisors of C form a subgroup of the divisor class group, since for any f , g ∈ K (C ):

div(fg) = div(f ) + div(g), div(1/f ) = − div(f ).
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Definition 3.2. The Picard group of C is the quotient of its divisor group by the subgroup of principal
divisors.

Another fundamental concept in our study is the genus g(C ) of the curve C . In our particular case
where C ⊆ P2 is given by the vanishing locus of a homogeneous polynomial of degree d , the genus of C
can be computed to be

g(C ) =
(d − 1)(d − 2)

2
,

if the curve C is non-singular (see e.g. [9, Chap. 8, Prop. 5]). Note in particular that if d = 3, then
g(C ) = 1.

3.2 Elliptic curves

Definition 3.3. An elliptic curve is a genus one curve E/K with a distinguished K -rational point OE ∈
E (K ).

Proposition 3.4. Let char K 6= 2, 3. Then, E/K is isomorphic to a projective plane curve of the form

y2z = x3 + axz2 + bz3,

where the point OE corresponds to the point at infinity (0 : 1 : 0). The coefficients satisfy 4a3 + 27b2 6= 0.

The points of an elliptic curve are known to have a natural group structure. Given two points P, Q ∈
E (K ), we define P + Q with the following procedure, which is represented in Figure 1:

• If P 6= Q, the line passing through P and Q intersects E in another point R. Then, the line passing
through OE and R intersects E at a third point, which we define to be P + Q.

• If P = Q, we choose the first line to be the tangent line of E at P.

• If R = OE , set P + Q := OE .

P
Q

R

P + Q

P

R

[2]P

Figure 1: The group law of an elliptic curve. Figure obtained from [8].

Theorem 3.5. The operation + defines an abelian group structure on E.

We denote by E [n] the group of n-torsion points, that is, the group of points P ∈ E such that nP = 0E .
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3.3 The Jacobian of a genus one curve

Given any genus one curve, there is a natural way to associate to it an elliptic curve, called the Jacobian.
This can be made more precise (see [5, Chap. 20, Theor. 1]):

Proposition 3.6. Let C/K be a genus one curve. Then, there exists an elliptic curve E/K together with
an isomorphism φ : C → E with the property that for every σ ∈ Gal(K/K ) the isomorphism ϕσ : E → E
defined by ϕσ = (σφ) ◦φ−1 is a translation by a point Pσ, for some Pσ ∈ E (K ). Moreover, E is unique up
to K -isomorphism.

We define the Jacobian of the curve C/K to be the elliptic curve E/K appearing in Proposition 3.6.

Proposition 3.7. The group structure of the points of the Jacobian E is isomorphic to the degree-0 Picard
group of C (which is the group defined in Definition 3.2 restricted to the divisors of degree 0).

3.4 Models of genus one curves

If a genus one curve has a rational point, then it can be brought to a Weierstrass form, which is the form
given by Proposition 3.4. However, if the curve does not have a rational point, we have to seek other
models for the curve. We will follow the exposition in [1].

Assume that a genus one curve C/K has a K -rational divisor D, meaning that σD = D for all σ ∈
Gal(K/K ). Assume deg D = n > 0, and define

L(D) := {f ∈ K (C ) | div(f ) + D ≥ 0} ∪ {0}.

It is a K -vector space, and the Riemann–Roch theorem in this case tells us that dimK L(D) = n (see [9]).

Let us focus on the case n = 3 (the cases n = 2, 4 are covered in [1]). Since dimK L(D) = 3, we choose
a K -basis of L(D), say {x , y , z}. Then, the ten elements x3, x2y , x2z , xy2, xyz , xz2, y3, y2z , yz2, z3

all belong to the 9-dimensional space L(3D), so there exists a linear relation between these elements. In
other words, there exists a ternary cubic form U such that

U(x , y , z) = 0.

In [1], there is an expression for two invariants of U, which we will call c4 and c6. We can further define

∆ =
c3
4−c2

6
1728 .

Theorem 3.8. The equation U(x , y , z) = 0 defines a genus one curve if and only if ∆ 6= 0. In that case,
and if char K 6= 2, 3, the Jacobian of the curve is

y2 = x3 − 27c4x − 57c6.

3.5 Galois cohomology and elliptic curves

Let G be a topological group (i.e. G has a topology where the group operation and the inverse are
continuous).

http://reportsascm.iec.cat32

http://reportsascm.iec.cat


Mart́ı Oller Riera

Definition 3.9. An abelian group M is a G -module if there is an action G ×M → M satisfying, for all
g , g ′ ∈ G , m, m′ ∈ M:

(i) g(m + m′) = gm + gm′.

(ii) (gg ′)m = g(g ′m).

(iii) 1m = m.

(iv) The G -action is continuous with respect to the topology on G and the discrete topology on M.

Definition 3.10. A morphism of G modules is a group morphism α : M → N respecting the G -action
on M and N.

Now, let K be a perfect field and set GK = Gal(K/K ). We note that GK is naturally a topological
group under the Krull topology.

Definition 3.11. Let M be a GK -module. Then, its 0-th cohomology group is

H0(K , M) := MGK = {m ∈ M | gm = m for all g ∈ GK}.

Definition 3.12. Let M be a GK -module. The group of 1-cocycles is given by

Z 1(K , M) = {ξ : GK → M | ξ(gh) = g(ξ(h)) + ξ(g), ξ continuous},

Its subgroup of 1-coboundaries B1(K , M) consists of the cocycles ξ ∈ Z 1(K , M) such that ξ is of the
form ξ(g) = gm −m for some m ∈ M. Then, the 1st cohomology group is

H1(K , M) =
Z 1(K , M)

B1(K , M)
.

Proposition 3.13. Consider the exact sequence of GK -modules given by

0 P M N 0.

Then, there is a long exact sequence

0 H0(K , P) H0(K , M) H0(K , N)

H1(K , P) H1(K , M) H1(K , N).

δ

Remark 3.14. We could define higher cohomology groups (H2, H3 ... ) that would continue the long exact
sequence in an analogous manner.

Let us return to the setting of elliptic curves. For an elliptic curve E/K , there is a natural Galois action
defined component-wise. Let us consider the exact sequence

0 E [n] E E 0.
×n
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Then, Proposition 3.13 gives us a long exact sequence:

0 E (K )[n] E (K ) E (K )

H1(K , E [n]) H1(K , E ) H1(K , E ).

×n

δ

×n

From this long exact sequence we can extract a short exact sequence:

0 E(K)
nE(K) H1(K , E [n]) H1(K , E )[n] 0.δ ı (1)

This sequence is known as the Kummer exact sequence for E/K .

3.6 The twisting principle

We will conclude this section by interpreting what H1(K , E [n]) and H1(K , E ) are. We will assume that
char K - n, a harmless assumption given that later we will deal with n = 3 and char(K ) 6= 2, 3. We will
follow the exposition in [7].

We will make use of the twisting principle, which says that if X/K is an object defined over K , then
K -isomorphism classes of twists of X (other objects Y /K isomorphic to X over K ) are parametrized
by H1(K , Aut(X )), where Aut(X ) is the automorphism group of X .

Here, the twisting principle is stated rather loosely, but it will be true for all our applications. See [11]
and [7] for further details.

In view of the principle, if we are able to find a suitable object such that Aut(X ) is E or E [n], then we
will be able to interpret the objects arising in the Kummer sequence.

Definition 3.15. A torsor under E is a pair (C ,µ), where C is a smooth projective curve of genus one
defined over K , and µ : E × C → C is a morphism defined over K that induces a simple transitive action
on K -points.

An isomorphism of torsors (C1,µ1) ∼= (C2,µ2) is an isomorphism of the underlying curves that respects
the E -action.

Lemma 3.16. Every torsor under E is a twist of (E , +), where (E , +) is the trivial torsor given by the
group law. Moreover, Aut(E , +) = E .

Hence, by the twisting principle:

Theorem 3.17. The group H1(K , E ) parametrizes the torsors of E .

Definition 3.18. A torsor divisor class pair (C , [D]) is a pair consisting of a torsor C of E and a K -rational
divisor class [D] of degree n. Here, rationality means that σ(D) ∼ D for all σ ∈ Gal(K/K ).

Two such pairs (C1, [D1]) and (C2, [D2]) are isomorphic if there is an isomorphism of torsors φ : C1 → C2

such that φ∗D2 ∼ D1.

Lemma 3.19. Every torsor divisor class pair is a twist of (E , [nOE ]), OE is the point at infinity of E .
Moreover, Aut(E , [nOE ]) = E [n].
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The twisting principle in this case gives

Theorem 3.20. The group H1(K , E [n]) parametrizes the K -isomorphism classes of torsor divisor class
pairs.

In particular, it can be shown that in the Kummer sequence

0 E(K)
nE(K) H1(K , E [n]) H1(K , E )[n] 0,δ ı

the maps are defined as

δ(P) = (E , [(n − 1)OE + P]) and ı(C , [D]) = C .

4. 3 × 3 × 3 Bhargava cubes

Most of the results that we present here appear in [4]. However, this article takes a slightly different point
of view more focused in the group law of Theorem 4.4.

Assume that K is a perfect field and char(K ) 6= 2, 3. Let us consider a 3×3×3 cube (aijk ) with entries
in K . It can be drawn as follows:

a311 a312 a313

a321 a322 a323

a331 a332 a333
a211 a212 a213

a221 a222 a223

a231 a232 a233
a111 a112 a113

a121 a122 a123

a131 a132 a133

Analogously to the 2× 2× 2 case, we can partition this cube in three different ways to obtain the “front”
section, the “top” section and the “side” section:

Af ,i =

ai11 ai12 ai13

ai21 ai22 ai23

ai31 ai32 ai33

 , At,i =

a1i1 a1i2 a1i3

a2i1 a2i2 a2i3

a3i1 a3i2 a3i3

 , As,i =

a11i a21i a31i

a12i a22i a32i

a13i a23i a33i

 ,

for i = 1, 2, 3. These three partitions yield three polynomials using:

P•(X , Y , Z ) = det(A•,1X + A•,2Y + A•,3Z ),

with • = f , s, t.
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We note that Pf , Pt , Ps are homogeneous polynomials in X1, X2, X3 of degree 3, and hence define
algebraic sets in P2:

C• = {(X1, X2, X3) ∈ P2 | P•(X1, X2, X3) = 0}.

By the discussion in Theorem 3.8, any of these algebraic sets define a smooth genus one curve if and only
if their discriminant ∆ defined in Subsection 3.4 is different from 0.

Lemma 4.1. All curves Cf , Cs , Ct share the same invariants c4, c6, and hence the same discriminant ∆.
In particular, if one of the curves is smooth, then they all are smooth.

The proof can be done with an explicit computation, which we omit. Assume from now on that all
three curves are smooth.

Theorem 4.2. Let Cf , Cs , Ct be the curves arising from a 3×3×3 cube, and assume they are all smooth.
Then, all three curves are isomorphic over K .

Sketch of proof. Let (x1, x2, x3)∈Cf , and consider the matrix Mf (x1, x2, x3)=Af ,1x1+Af ,2x2+Af ,3x3. Then,
the columns cf ,i (x1, x2, x3) of this matrix are linearly dependent, say by some coefficients (X1, X2, X3) ∈ P2.
Then, a quick computation shows that

0 = X1cf ,1(x1, x2, x3) + X2cf ,2(x1, x2, x3) + X3cf ,3(x1, x2, x3)

= x1cs,1(X1, X2, X3) + x2cs,2(X1, X2, X3) + x3cs,3(X1, X2, X3).
(2)

The assignment ϕfs : Cf → Cs given by sending (x1, x2, x3) 7→ (X1, X2, X3) can be seen to be an isomor-
phism of algebraic curves.

We can analogously choose ϕft , ϕsf , ϕst , ϕtf and ϕts . It holds that ϕij = ϕ−1ji for any choice of i , j ;
but in general it is not true that ϕki ◦ ϕjk ◦ ϕij is the identity.

We can interpret Theorem 4.2 as the analogue of Theorem 2.6, item (i). Both results restrict how
“different” the arising objects can be: the binary quadratic forms have the same discriminant and the
genus one curves are isomorphic.

In particular, given that the three curves are isomorphic, they have the same Jacobian curve, which we
will call E .

We still need to find out whether these three curves obey some suitable group law. To this end,
consider the divisor at infinity Df of Cf , given by the intersection of Cf with any hyperplane (if we change
the hyperplane, we get a linearly equivalent divisor). Similarly, consider the divisors at infinity Ds and Dt

of Cs and Ct , let ∆f = Df , and let ∆s and ∆t be the pullbacks of Ds , Dt with respect to ϕfs and ϕft ,
respectively. Then, define

αf = (Cf , [∆f ]), αs = (Cs , [∆s ]), αt = (Ct , [∆t ]).

By Theorem 3.20, the elements αf , αs , αt can be interpreted in H1(K , E [3]). Additionally, it can be shown
that there exist points Pf , Ps , Pt in Cf such that 3P• ∼ ∆• for • = f , s, t.

Lemma 4.3. Assume ∆f , ∆s , ∆t arise from a cube. Then,

2∆f ∼ ∆s + ∆t ,

and ∆f is not linearly equivalent to either of ∆s or ∆t .
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Theorem 4.4. The three cocycles αf ,αs ,αt ∈ H1(K , E [3]) satisfy

αf + αs + αt = 0.

Proof. Recall that a degree 0 divisor can be identified as a point in the Jacobian (see Subsection 3.3). We
claim that:

Q = Pt + Ps − 2Pf ∈ E [3].

Indeed, remembering that 3P• ∼ ∆•, for • = f , s, t, and using the previous lemma:

3Q = 3Pt + 3Ps − 6Pf ∼ ∆t + ∆s − 2∆f ∼ 0.

We conclude that the cocycle αf + αs + αt is given by

αf (σ) + αs(σ) + αt(σ) = σ(Pf + Ps + Pt)− (Pf + Ps + Pt)

= (σQ − Q) + σ(3Pf )− 3Pf

∼ (σQ − Q) + σ∆f −∆f = σQ − Q,

since ∆f is a K -rational divisor. Thus, αf + αs + αt is a coboundary and the result follows.

4.1 Converse results

Now, we are interested in the converse to Theorem 4.4, namely: given any three cocycles α1,α2,α3 ∈
H1(K , E [3]), does there exist a cube giving rise to them? To start answering the question, we first state
the converse result for divisors.

Theorem 4.5. There is a bijection between:

(i) 3× 3× 3 cubes (modulo a suitable action of GL3(K )).

(ii) Isomorphism classes of (C , ∆f , ∆s , ∆t), where C is a genus one curve and ∆f , ∆s , ∆t are K -rational
divisors of degree 3 satsifying 2∆f ∼ ∆s + ∆t and ∆f � ∆s , ∆t .

See [4] for the proof.

Now, we recall again the Kummer exact sequence

0 E(K)
nE(K) H1(K , E [n]) H1(K , E )[n] 0.δ ı

By the definition of the map ı, if we have any three cocycles α1,α2,α3 ∈ H1(K , E [n]) we need to have
ı(α1) = ı(α2) = ı(α3).

However, there is still one more consideration to make, which is that an element of H1(K , E [3]) is
not necessarily represented by a projective cubic plane curve. Given a torsor divisor class pair (C , [D]), the
divisor D does not necessarily satisfy σD = D for every σ ∈ Gal(K/K ), but rather that σD ∼ D. By the
discussion in Subsection 3.4, the curve C needs to have a K -rational divisor D in order to be represented
by a projective plane cubic curve.

In [7], an obstruction map Ob is defined, so that Ob(α) = 0 for α ∈ H1(K , E [n]) if and only if the
cocycle α can be represented by (C , [D]), with σD = D for all σ in the Galois group.
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Finally, observe that the action of a translation by a point P ∈ E (K ) does not change the cocycle. In
other words, (C , [D]) = (C , [D ′]), where D ′ is obtained by the action of 3P on D. If 3E (K ) = {OE}, then
in the case where α1 = α2 = α3 we would not be able to change the divisor corresponding to the cocycles
and hence we would not be able to guarantee the conditions in Lemma 4.3.

Theorem 4.6. Assume that α1,α2,α3 ∈ H1(K , E [3]) satisfy

(i) α1 + α2 + α3 = 0.

(ii) ı(α1) = ı(α2) = ı(α3).

(iii) Ob(α1) = Ob(α2) = Ob(α3) = 0.

(iv) 3E (K ) 6= {OE} if α1 = α2 = α3.

Then, there exists a cube giving rise to α1, α2, α3.

As a final remark, observe that we are dealing with elements α1,α2,α3 ∈ H1(K , E [3]) with ı(α1) =
ı(α2) = ı(α3). By looking at the Kummer sequence, we see that the group law is actually taking place
more naturally in E (K )/3E (K ). Therefore, Theorem 4.6 can be restated more naturally:

Corollary 4.7. Assume we have a genus one curve C/K with Jacobian E/K , and suppose given three
points P1, P2, P3 ∈ E (K )/3E (K ) such that P1 + P2 + P3 = 0 in E (K )/3E (K ). Then, there exists a cube
giving rise to this information as long as we avoid the case where P1 = P2 = P3 and 3E (K ) = {OE}.
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Resum (CAT)
En aquest projecte estudiem el comportament dinàmic de la faḿılia de fun-

cions transcendents meromorfes fλ(z) = λ
(

ez

z+1 − 1
)
, la qual es pot veure

com l’anàleg meromorf de la ben coneguda faḿılia de polinomis cúbics de

Milnor Pa(z) = z2(z−a) [12] o la seva versió entera λz2ez [7, 8]. Contràriament a

aquests dos casos, les conques d’atracció de fλ no són simplement connexes. De fet,

en aquest document es demostra que sota certes condicions, la conca d’atracció

de z = 0 és infinitament connexa.

Abstract (ENG)
In this paper we analyze the dynamical behavior of the family of transcendental

meromorphic maps fλ(z) = λ
(

ez

z+1 − 1
)
. This family is the meromorphic analogue

of the well-known Milnor family of cubic polynomials Pa(z) = z2(z − a) [12] or its

entire version λz2ez [7, 8]. Opposed to these two cases, the basins of attraction

of fλ are not simply connected. In fact, we prove that under certain conditions, the

basin of attraction of z = 0 is infinitely connected.
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Dynamics of a family of meromorphic functions

1. Introduction

In this work we focus on some dynamical aspects of transcendental meromorphic functions, i.e., we study the
dynamical systems given by the iterates of meromorphic functions f : C→ C∞ with an essential singularity
at ∞, where C∞ denotes C ∪ {∞} or the Riemann sphere. Here the n-th iterate of a point z ∈ C is

denoted by f n(z) = (f ◦
(n)
· · · ◦ f )(z), and the sequence of iterates {f n(z)}n∈N is well-defined for all z ∈ C

except for the countable set of poles and prepols of f of any order.

The interest for these functions is twofold: The essential singularity, on the one hand, adds a lot of
chaos to the dynamical system, mainly because of Picard’s Theorem, which states that in each punctured
neighborhood of ∞, these functions assume each value of the Riemann sphere C∞, with at most two
exceptions (such exceptional values are known as omitted values), infinitely often. Hence, given a point z ∈
C, if its orbit O+

f (z) = {f n(z) : n ∈ N} is near ∞ at some moment, after one iteration it can land at
almost any place of the plane. On the other hand, the presence of poles allows for more generality, when
compared to entire functions, since ∞ is not required to be an omitted value.

The phase space (also called dynamical plane) of a meromorphic function f splits into two completely
invariant sets: The Fatou set F (f ), which is the set of points z ∈ C such that the sequence of iter-
ates {f n}n∈N is defined and normal in some neighborhood of z ; and its complement, the Julia set J(f ).

It follows trivially from the definition that the Fatou set is open and hence the Julia set is closed.
The first consists of components known as Fatou components, each of them might be either simply or
multiply connected (including the infinitely connected case as we will see here). Let U = U0 be a Fatou
component, then f n(U) is contained in another component of F (f ) that we denote by Un. We say that
U0 is preperiodic if Un = Um for some n > m ≥ 0 (if m = 0, we say that its periodic and if n = 1, we say
that it is fixed or forward invariant), otherwise we say that U is wandering. Periodic Fatou components are
classified according to the following celebrated result of Fatou [2], which for simplicity we state for fixed
components.

Theorem 1.1 (Classification Theorem for fixed Fatou components). Let U be a fixed Fatou component.
Then we have one of the following possibilities:

(i) U contains an attracting fixed point z0 and f n(z) −−−→
n→∞

z0 for all z ∈ U, which is called the

immediate attractive basin of z0.

(ii) ∂U contains a fixed point z0 and f n(z) −−−→
n→∞

z0 for all z ∈ U. Moreover, f ′(z0) = 1 if z0 ∈ C and

U is called a parabolic (or Leau) domain.

(iii) There exists φ : U → D conformal such that φ(f (φ−1(z))) = e2πiαz for some α ∈ R \Q. Moreover,
U is called a Siegel disk.

(iv) There exists φ : U → A conformal where A = {z : 1 < |z | < r}, r > 1, is an annulus such that
φ(f (φ−1(z))) = e2πiαz for some α ∈ R \Q. Moreover, U is called a Herman ring.

(v) There exists z0 ∈ ∂U such that f n(z) −−−→
n→∞

z0 for all z ∈ U but f (z0) is not defined. Moreover,

U is called a Baker domain.

In order to study the Fatou components we introduce the notion of the singularities of the inverse,
which are the points a ∈ C where some branch of f −1 is not well-defined (holomorphic and injective) in
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a neighborhood of a ∈ C. Two different cases can arise: either there exists z ∈ C such that f (z) = a
and f ′(z) = 0 (z ∈ C is then said to be a critical point and a ∈ C a critical value); or there exists a
curve γ : [0,∞)→ C such that γ(t) −−−→

t→∞
∞ and f (γ(t)) −−−→

t→∞
a (a ∈ C is then said to be an asymptotic

value and the curve γ an asymptotic path).

Singular values (critical or asymptotic) play a fundamental role in the dynamical behavior of holomorphic
(or meromorphic) functions. For example, any immediate attractive or parabolic basin of attraction needs
to contain a singular value. In the remaining cases they are also relevant (see [1, 2, 4, 5, 11]), but in this
paper we will focus in the study of an attractive basin of the family of maps

fλ(z) = λ

(
ez

z + 1
− 1

)
,

where λ ∈ C \ {0} is a complex parameter.

Figure 1: In green, F (f0.89). Range (−5, 7)× (−6, 6).

Maps in this family are the simplest meromorphic maps with two singular values: z = 0 which is a fixed
critical value (and fixed point), and z = −λ, which is an asymptotic value whose orbit depends on λ. It
has also one single pole z = −1, which is not omitted except for λ = 1. Since z = 0 is a superattracting
fixed point (i.e., a critical point which is a fixed point), its basin of attraction Aλ(0) is non-empty for all
values of λ.

This family can be viewed as the meromorphic analogue to the well-known Milnor family of cubic
polynomials Pa(z) = z2(z − a) [12] or its entire version λz2ez [7, 8], both having also a superattracting
fixed point and a free second singular value, which may or may not be captured by the attracting basin
of 0. In both cases all components of the Fatou set are simply connected. In contrast, in this paper we
prove that the basin of attraction of z = 0 for fλ is infinitely connected for some parameter values.

Additionally, it is well-known that functions with only finitely many singular values do not have Wan-
dering nor Baker domains [3, 4, 6, 10], hence F (fλ) does not have any of these components. Moreover,
since any attractive basin or rotation domain needs a singular value, we can have at most two periodic
cycles of Fatou components for every parameter value, one of which is always the basin of z = 0.

Hence it is to our interest to study the main capture component C0 = {λ ∈ C∗ : −λ ∈ A∗λ(0)}, where
A∗λ(0) denotes the immediate basin of attraction of z = 0. In this case there is only one Fatou component
and we can draw an accurate picture of F (f ) by considering the points whose orbit is attracted to z = 0.
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After addressing the study of the dynamical properties of fλ for λ ∈ C0, we prove:

Theorem A. If −λ ∈ A∗λ(0), then Aλ(0) is connected and infinitely connected. Moreover, the set C0 :=
{λ ∈ C∗ : −λ ∈ A∗λ(0)} contains a punctured disk of center 0 and radius 1/2 (see Figure 2).

The paper is structured as follows. In Section 2 we prove some estimates which are useful in Section 3,
where we prove Theorem A.

2. Preliminaries

Our goal in this section is to prove some estimates that will be useful in the later section. We start by
estimating the radius of the largest disk contained in Aλ(0), which we denote by

rλ = sup{r > 0 : D(0, r) ⊂ Aλ(0)} < 1,

where the last inequality follows from the fact that z = −1 is a pole and hence belongs to the Julia set.

Proposition 2.1 (Maximum inner disk). For every λ ∈ C∗,

rλ ≥ ε(λ) :=
1

2

(
2 + |λ| −

√
|λ|2 + 4|λ|

)
∈ (0, 1).

Consequently D(0, ε(λ)) ⊂ Aλ(0).

Proof. For 0 < ε < 1 and |z | < ε we have

|fλ(z)| = |fλ(z)− fλ(0)| ≤ |λ|
(

max
|z|=ε

∣∣∣∣ zez

(z + 1)2

∣∣∣∣) |z |,
where we have used the Maximum Modulus Principle for f ′λ. For z = εe iθ we have

gλ(ε, θ) := |λ|
∣∣∣∣ zez

(z + 1)2

∣∣∣∣ = |λ| εeε cos(θ)

1 + ε2 + 2ε cos(θ)
.

The goal is to obtain the maximum ε such that fλ is a strict contraction in D(0, ε), because then all points
in D(0, ε) converge to z = 0 under iteration, i.e., we want to obtain sup{ε ∈ (0, 1) : gλ(ε, θ) < 1, θ ∈
[0, 2π)} since then it follows that |fλ(z)| < |z |. We split it in two cases depending on θ.

• For θ ∈ [−π/2,π/2), we have gλ(ε, θ) ≤ |λ|εeε/(1 + ε2) =: gλ,1(ε).

• For θ ∈ [π/2, 3π/2), we have gλ(ε, θ) ≤ |λ|ε/(1− ε)2 =: gλ,2(ε).

Observe now that for 0 < ε < 1, we always have gλ,1(ε) ≤ gλ,2(ε). Moreover, for 0 < ε < 1,

|λ| ε

(1− ε)2
< 1 ⇐⇒ ε2 − (2 + |λ|)ε+ 1 > 0,

and this last polynomial has roots

ε(λ) =
1

2

(
2 + |λ| −

√
|λ|2 + 4|λ|

)
and

2 + |λ|+
√
|λ|(|λ|+ 4)

2
.

Then ε(λ) ∈ (0, 1) and the result follows.
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As a consequence of Proposition 2.1 we see now that for a disk of parameters of definite size, the
free asymptotic value z = −λ belongs to the immediate basin of z = 0. The set of parameters with this
property is called the main capture component C0, which was defined in the introduction.

Figure 2: In green, C0. In white, ∂D(0, 1/2). Range (−4, 4)× (−4, 4).

Corollary 2.2. D∗(0, 1/2) = D(0, 1/2) \ {0} ⊂ C0.

Proof. From the lower bound on rλ given by Proposition 2.1, we obtain that −λ ∈ D(0, ε(λ)) if ε(λ)−λ >
0, or equivalently if

2− |λ| >
√
|λ|2 + 4|λ|.

It is easy to verify that this inequality holds for |λ| < 1/2.

3. Connectivity of the basin of z = 0: Proof of
Theorem A

We prove Theorem A in two parts. Assume in what follows that the asymptotic value z = −λ belongs to the
immediate basin of attraction of z = 0, or equivalently the parameter λ ∈ C0. We first show that the basin
of attraction of z = 0 is connected, that is, Aλ(0) = A∗λ(0), and hence totally invariant (Theorem 3.2).
Then we prove that under the same hypothesis, A∗λ(0) is infinitely connected (Theorem 3.4).

Both results follow from two technical lemmas.

Lemma 3.1. Let λ ∈ C0. Then, all asymptotic paths of z = −λ intersect the same Fatou component
of F (fλ).
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Proof. Given an asymptotic path Γ of z = −λ, i.e.,

Γ(t) −−−→
t→∞

∞ and fλ(Γ(t)) −−−→
t→∞

−λ

then Re(Γ(t)) must be bounded from above, i.e., exists MΓ <∞ such that

sup
t≥0

Re(Γ(t)) ≤ MΓ.

Since −λ ∈ A∗λ(0), there exists ε > 0 such that D(−λ, ε) ⊂ A∗λ(0). Now, the preimages of D(−λ, ε) must
belong to Aλ(0). In particular, there exists ν < 0 and a half-plane, Πν = {z ∈ C : Re(z) < ν} such that
fλ(Πν) ⊂ D(−λ, ε), and hence Πν belongs to one component of Aλ(0). But now, all asymptotic paths
must have unbounded negative real part and hence they must all intersect Πν .

We now can prove that in this case the basin of z = 0 is connected.

Theorem 3.2. If λ ∈ C0, then Aλ(0) = A∗λ(0) is connected. In particular, Aλ(0) is totally invariant and
is the whole Fatou set.

Proof. Suppose that −λ ∈ A∗λ(0). From Proposition 2.1, we can consider the disk U0 = D(0, ε(λ)) ⊂
A∗λ(0).

Now we pull-back U0 in order to obtain the whole immediate basin A∗λ(0):

Consider, for N > 0, UN as the connected component of f −1
λ (UN−1) that contains UN−1. This recur-

rence defines a sequence of subsets {UN}N≥0 such that:

• UN ⊂ A∗λ(0) for all N ≥ 0.

• UN ⊂ UN+1 for all N ≥ 0.

• A∗λ(0) =
⋃

N≥0 UN .

Since −λ ∈ A∗λ(0), there exists N > 0 such that −λ ∈ UN (i.e., f N
λ (−λ) ∈ U0), and we can find a

path γ ⊂ UN that joins −λ and 0.

So UN+1 is unbounded, because z = −λ is an asymptotic value (a Picard Value), hence the preimage
of γ must contain a path that joins 0 and ∞ (which is contained in UN+1). Using Lemma 3.1 we obtain
that, in fact, when −λ ∈ A∗λ(0) all asymptotic tracts intersect A∗λ(0).

Now suppose thatAλ(0) is not connected, then we must have at least two connected components,A∗λ(0)
and U. Furthermore,

fλ(U) = A∗λ(0) \ {−λ}.

So U must contain a tail of an asymptotic path, but by Lemma 3.1 and the previous observation, this tail
must be contained in A∗λ(0) and the claim follows.

Our next goal is to prove that A∗λ(0) is infinitely connected (Theorem 3.4). To that end we first
construct a closed curve in A∗λ(0) which surrounds the pole z = −1. The Böttcher coordinates are the key
ingredient. Given a closed curve γ, we denote by ind(γ, p) the winding number of γ with respect to the
point p ∈ C.

Lemma 3.3. Let −λ ∈ A∗λ(0). Then there exists a closed, simple curve β, contained in Aλ(0), such that
0 6∈ β and ind(fλ(β), 0) = −1.
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Proof. Let U be a neighborhood of z = 0 and ϕ : U → D(0, r) be the Böttcher map which locally
conjugates fλ to Q0(w) = w 2.

Consider ε < r < 1 and define, D = ϕ−1(D(0, ε)) and D ′ = ϕ−1(D(0, ε2)). The curves, r̃1(t) = i
√

t,
r̃2(t) = −i

√
t, for t ∈ [0, ε), are mapped by Q0 to r̃0(t) = −t = Q0(r̃j(t)), j = 1, 2. Now set rj(t) =

ϕ−1(r̃j(t)), j = 1, 2.

Since −λ ∈ A∗λ(0), there exists a disk V centered at z = −λ such that V̄ ⊂ A∗λ(0) and, by Lemma 3.1,
f −1
λ (V̄ ) contains a half-plane {z ∈ C : Re(z) < ν}.

Furthermore, since by Theorem 3.2, A∗λ(0) = Aλ(0) is connected, we can find a simple curve α0 ⊂
A∗λ(0) such that α0(0) = 0, α0(1) = −λ and (r0)|[0,ε] = (α0)|[0,ε].

Define s ∈ (ε, 1) such that α0(s) ∈ ∂V . Observe that the preimage of α0 by fλ are two simple
curves, α1, α2 (because the preimage of r̃0 by Q0 consists of two disjoint curves), which are asymptotic
paths, such that:

• (rj)|[0,ε] = (αj)|[0,ε] for j = 1, 2.

• (α1)|[ε,s) ∩ (α2)|[ε,s) = ∅, that is, because 0 6∈ fλ((α1)|[ε,s)) = fλ((α2)|[ε,s)) = (α0)|[ε,s) and hence,
fλ is conformal for every z ∈ (α1)|[ε,s) ∪ (α2)|[ε,s).

Now define.

• γj = (αj)|[ε,s] for j = 0, 1, 2.

• γ3 ⊂ f −1
λ (∂V ) the simple curve that joins γ1(s) and γ2(s).

• γ̃4(t) = εe−2πit and γ4,1 = ϕ−1((γ̃4)|[1/4,3/4]), γ4,2 = ϕ−1((γ̃4)|[−1/4,1/4]).

γ0

γ1

γ2

r0

r1

r2

γ3

V

−λ

f −1
λ (V )

D ′

D

Figure 3: Representation of the curves and domains in the proof of Lemma 3.3.
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Then we can define the curves,

β1 = γ1 ∪ γ2 ∪ γ3 ∪ γ4,1 and β2 = γ1 ∪ γ2 ∪ γ3 ∪ γ4,2,

which by construction are closed, simple curves contained in Aλ(0) that omit z = 0. Observe that β1

(resp. β2) can be parametrized as a simple closed curve preserving the orientation that γ4,1 (resp. γ4,2)
inherits from γ̃4.

Finally,
fλ(βj) = ∂V ∪ γ0 ∪ ∂D ′, j = 1, 2.

Hence, since ∂V ∪ γ0 does not contribute to ind(fλ(βj), 0), we have ind(fλ(βj), 0) = ind(∂D ′, 0), thus

ind(fλ(β1), 0) = ind(∂D ′, 0) = −1 or ind(fλ(β2), 0) = ind(∂D ′, 0) = −1

(we want the curve β1 or β2 to be oriented counterclockwise), so we can take β = β1 or β = β2 so that
ind(fλ(β), 0) = −1.

Finally, we prove the remaining part of the theorem.

Theorem 3.4. If λ ∈ C0 = {λ ∈ C∗ : −λ ∈ A∗λ(0)}, then Aλ(0) = F (fλ) is infinitely connected.

Proof. By Theorem 3.2 we know that Aλ(0) = A∗λ(0) = F (fλ) is connected. Let Z (fλ) denote the discrete
set of zeros of fλ and P(fλ) the set of poles of fλ.

Consider the simple closed curve provided by Lemma 3.3. By the Argument Principle (see [9]),

ind(fλ(β), 0) = −1 =
∑

a∈Z(fλ)

m(a) ind(β, a)−
∑

a∈P(fλ)

m(a) ind(β, a),

where m(a) denotes the order of the zero or the pole.

Since β is a simple closed curve oriented counterclockwise, the equation reads

−1 =
∑

a∈Z(fλ)

m(a) ind(β, a)− ind(β,−1),

which can only be satisfied if β surrounds no zeros of fλ and the unique pole z = −1 is surrounded by β.

So, β ⊂ Aλ(0) = A∗λ(0) and −1 ∈ int(β). Then, the successive preimages of int(β) contain points w ∈
O−fλ(∞) ⊂ J(fλ) which lie in the interior of a closed curve contained in Aλ(0). Hence, since the backward
orbit of ∞ is an infinite set (the points that are eventually mapped to ∞ under iteration by fλ), Aλ(0) is
infinitely connected.
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[6] A.È. Erëmenko, M.Yu. Lyubich, “Dynamical
properties of some classes of entire functions”,
Ann. Inst. Fourier (Grenoble) 42(4) (1992),
989–1020.

[7] N. Fagella, A. Garijo, “Capture zones of the
family of functions λzm exp(z)”, Internat. J.

Bifur. Chaos Appl. Sci. Engrg. 13(9) (2003),
2623–2640.

[8] N. Fagella, A. Garijo, “The parameter planes of
λzm exp(z) for m ≥ 2”, Comm. Math. Phys.
273(3) (2007), 755–783.

[9] T.W. Gamelin, Complex Analysis, Undergrad-
uate Texts in Mathematics, Springer-Verlag,
New York, 2001.

[10] L.R. Goldberg, L. Keen, “A finiteness theorem
for a dynamical class of entire functions”, Er-
godic Theory Dynam. Systems 6(2) (1986),
183–192.

[11] J. Milnor, Dynamics in One Complex Variable,
Third edition, Annals of Mathematics Stud-
ies 160, Princeton University Press, Princeton,
NJ, 2006.

[12] J. Milnor, “Cubic Polynomial Maps with
Periodic Critical Orbit, Part I”, Stony Brook
Institute for Mathematical Sciences (2008).
http://www.math.stonybrook.edu/~jack/

PREPRINTS/cpm.pdf.

49Reports@SCM 7 (2022), 41–49; DOI:10.2436/20.2002.02.31.

http://www.math.stonybrook.edu/~jack/PREPRINTS/cpm.pdf
http://www.math.stonybrook.edu/~jack/PREPRINTS/cpm.pdf




AN ELECTRONIC JOURNAL OF THE

SOCIETAT CATALANA DE MATEMÀTIQUES
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aix́ı com en la solució numèrica amb el mètode dels elements finits per a simular

exemples en dues dimensions.

Abstract (ENG)
This work is concerned with the Phase-Field model of the Stefan problem, as well

as the numerical solution with the Finite Element Method to simulate examples in

two dimensions.

Keywords: heat diffusion, numeri-
cal methods, PDEs, modeling, FEM,
Phase-Field models, Stefan, solidifica-
tion.
MSC (2010): 65N30, 80A22,
80M10.
Received: July 28, 2022.
Accepted: September 29, 2022.

Acknowledgement
This work was supported by Generalitat de

Catalunya (2017-SGR-1278).

51http://reportsascm.iec.cat Reports@SCM 7 (2022), 51–61; DOI:10.2436/20.2002.02.32.

A Finite Element Method solution to the
Phase-Field model of the Stefan problem

http://reportsascm.iec.cat


A FEM solution to the Phase-Field model of the Stefan problem

1. Introduction

The Stefan problem, first introduced by Josef Stefan in [12] in the context of polar ice caps, is a boundary
value problem used to model the state of systems where phase transitions occur. It is a free boundary
problem; that is, a partial differential equation (PDE) to be solved for an unknown domain, or in a domain
with unknown interface. In this work, biphasic systems modeling a Liquid-Solid coexistence, and featuring
a pure substance are considered. A solution to the problem should be able to describe the position of the
moving interface γ(t) between the two different states of the given material, as well as the temperature at
each point in the space-time domain, u(x , t); all this, depending on a given a set of initial and boundary
conditions. A classical example could be the melting of an ice cube in a glass of water, where the equations
should provide the distribution of ice for any given time t, and the temperature at each point in space and
time.

The model we have chosen to approximate solutions to the Stefan problem is the so-called Phase-
Field model (PF). Phase-Field models are widely used in transformation problems, since they facilitate the
tracking of the interface. The main idea is to consider what is called the Phase-Field function or order
parameter (in this work noted as φ), a scalar function that equals a fixed constant in each phase and varies
rapidly, but smoothly (in our case from −1 to +1), in the interface region. The phase transformation occurs
inside a finite-width region, whose thickness is a parameter in the model, here noted as ξ, and where in
general the transport properties are assumed to vary with u. It is worth mentioning that the solution tends
to a Sharp-Interface model as ξ → 0. An important resource for the study of this modeling technique has
been [11].

When it comes to the numerical method used to obtain the solutions, the Finite Element Method (FEM)
has been chosen. It is a powerful and popular method, used in areas such as solid mechanics [9], electro-
magnetic potentials [10], or heat transfer – as it is here the case. One of its most salient advantages is that
it allows modeling complex and irregular geometries, given that it is capable of working under non-uniform
meshes. This is important because it makes it possible to capture local effects by calculating the solution on
a partially-refined domain, a process which helps produce accurate yet not so computationally-demanding
solutions.

This work serves as a stepping stone to implementing an adaptive solution to the Phase-Field model
of the Stefan problem. Such a procedure, inspired by the work of Alba Muix́ı in the context of crack
propagation in [9], would constitute an efficient solution that would drastically decrease the running time
involved and capture much better the local phenomena. This would in turn make it possible to calculate
approximations with finer meshes (and subsequently smaller time steps), allowing for ξ → 0, conditions
under which, as mentioned, the Phase-Field model converges to the Sharp-Interface model.

2. The Phase-Field model for the Stefan problem

The classical Stefan problem arises when we consider two phases of a material undergoing a phase transfor-
mation. A heat equation must be solved for each phase, but with the added difficulty of having a boundary
on a moving interface, where the temperature is fixed. That is why we say that we have a free boundary
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problem. A further equation, the Stefan condition (1c), is needed in order to have a mathematically closed
system. With this, the general form of the equations of the Stefan problem for a domain Ω are

∂u

∂t
= ∇ · (cl∇u), x ∈ Ωl(t),

∂u

∂t
= ∇ · (cs∇u), x ∈ Ωs(t),

lv = cs
∂u

∂n

∣∣
x↓γ(t)

− cl
∂u

∂n

∣∣
x↑γ(t)

.

(1a)

(1b)

(1c)

Here u is the temperature and the domain is divided into Ωl and Ωs , where the material is in liquid and solid
phase, respectively. For each of these subdomains, cl and cs are the diffusivity constants of the material.
Lastly, l is the latent heat per unit volume, while γ(t) is the position of the interface and v its normal
velocity.

Equations (1) are referred to here as Sharp-Interface model. The main difficulty of the FEM for solving
them comes from the fact that the computational mesh must be fitted to the interface γ(t) to represent
the weak discontinuity of the temperature. This requires a continuous mesh adaptation that is cumbersome
and computationally expensive.

To circumvent this, Phase-Field models consider a smooth variation of the temperature across the
interface. To do so, a Phase-Field variable φ is introduced, taking the value +1 in the liquid domain, −1 in
the solid, and varying smoothly between these values in a thin transition region, with the value 0 at the
interface.

2.1 Phase-Field models

The derivation of mathematical Phase-Field models from physical principles is built upon Landau–Ginzburg
theory of phase transitions, which can be found in [7]. The Phase-Field model presented here is based on
the work by Cahn and Hilliard in [3] and features the variables u and φ, which account for the temperature
and the phase state at each point in the space-time domain. There are several Phase-Field models for the
Stefan problem in the literature, most notably the ones based on the Kobayashi and the Caginalp potentials.
For the Kobayashi potential, originally introduced in [6], we have followed Fabbri and Voller, but with a
change of sign to fix the typo in equation (2.7) in [5]. An important reference for this section has been [8],
where a thorough explanation of the Phase-Field model for the Stefan problem can be found.

Given a domain Ω and its boundary Γ = ∂Ω, the Phase-Field model for the Stefan problem is a coupled
system of two PDEs. If we consider the system in a time interval [0, T ], these are:

∂u

∂t
= c∆u − l

2

∂φ

∂t
in Ω× [0, T ],

αξ2∂φ

∂t
= ξ2∆φ− ∂F

∂φ
in Ω× [0, T ],

(2a)

(2b)

with initial conditions u(x , 0) = u0(x), φ(x , 0) = φ0(x) and boundary conditions.

Equation (2a) is a heat equation, modified by the Phase-Field term. Here, u(x , t) represents T (x , t)−
TM , where T (x , t) is the temperature of the material and TM the temperature at which the change of
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phase takes place – in Liquid-Solid equilibrium, the fusion/solidifying temperature. In practice, we can think
of solidification/fusion in an ice-water system, where TM = 0, and so T (x , t) = u(x , t). An important
part of the model is the recovering potential F appearing in (2b), which is a double-well potential that
has its minima at the values of φ corresponding to the two different phases. The two recovering potentials
previously mentioned are

Caginalp: F (u,φ) =
1

8a
(φ2 − 1)2 − ∆s

2
φu, (3)

Kobayashi: F (u,φ) =
W

16

∫ φ

0
(r 2 − 1)(r + 2b(u)) dr , (4)

where a is a parameter exclusive of the Caginalp potential that should be chosen so that ∂F
∂φ has minima

near 0, −1 and +1, W is a constant with units of energy per unit volume, and ∆s is the entropy scale,
defined as the difference between the entropies of the liquid and solid phases at the melting temperature.

From a theoretical standpoint, both expressions (3) and (4) result in a double-well potential, with min-
ima at ±1 when taking sufficiently small values of u, and considering F (u,φ) as a function of φ. However,
while for the Kobayashi potential these minima are fixed, in the Caginalp potential they shift from ±1 as
u moves away from 0 (see Figure 1). This effect fades away as ξ → 0 and a→ 0, nonetheless, this potential
in practice produces values of |φ| > 1, which hinders the interpretation of the results. Consequently, we
employ the Kobayashi potential for practical examples.
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Figure 1: Caginalp (left) and Kobayashi (right) potentials as functions of φ, for three different values of u
(−0.025, 0, 0.025). In the first case, the minima depart from ±1 as u drifts away from 0, while in the second
they remain in the same place. The parameters of the models are taken as mentioned in Subsection 2.2,
a = 1, W = 8, ∆s = 4.

The reader should note that c has been taken in (2a) as constant and equal in both phases, as will
be the case in the whole of this work. Regarding the new parameters in the Phase-Field model, in (2b)
α is a timescale parameter and ξ is the Phase-Field energy parameter or gradient-energy coefficient, and
it controls the interface width. Sometimes the notation τ = αξ2 is used, with τ being the time relaxation
parameter. A detailed outline of parameters can be found in the work by Caginalp in [2].
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2.2 Interpretation of the model and assumptions

The dynamical interpretation for equations (2a) and (2b) is as follows. Equation (2a) is a Fourier heat
equation in which a source term has been added to factor in the latent heat release at the moving interface.
On the other hand, the phase equation (2b) is a linear time evolution that features the imbalance between
the excess interface free-energy and the restoring potential F (u,φ).

Throughout the examples, we have considered a constant diffusivity coefficient c = 1 and a latent
heat l = 1. Although these coefficients usually vary between phases and with temperature, respectively,
this approximation is valid to study the behavior of the equations. Indeed, this same assumption is found in
an important part of the literature (see, for instance, [2] and [8]). Also, in all cases we have considered a
pure substance, so that no gradients of concentration appear in the equations and only one set of material
parameters is needed.

Regarding the parameters of the Phase-Field model with the Kobayashi potential, we have used α = 1,
W = 8, ∆s = 4, and following Wheeler et al. in [14], b(u) (which should be a monotonic increasing
function ofu satisfying |b(u)| < 1/2) is taken as b(u) = 6u∆s/W .

Taking into account all of the above, the system of equations (2) with the Kobayashi potential can be
re-written as: 

∂u

∂t
= c∆u − l

2

∂φ

∂t
in Ω× [0, T ],

αξ2∂φ

∂t
= ξ2∆φ+ G (u,φ) in Ω× [0, T ],

(5)

with G (u,φ) = 1
16 Wφ+ 3

4 u∆s − 1
16 Wφ3 − 3

4 uφ2∆s.

One final comment to be made is that, in most cases, we have considered homogeneous Neumann
boundary conditions for both u and φ, simulating an isolated system. An important caveat is that, when
doing so, one has to be careful that the interface (i.e. {x ∈ Ω : φ(x , t) = 0}) remains far away enough from
the boundary with Neumann conditions, since the interface is by definition a region with strong gradients
in the Phase-Field variable φ, and both conditions cannot coexist.

3. Examples

3.1 2D analog of a known 1D Stefan problem

The goal of this first example is to validate the Phase-Field model and its numerical solution. To this end,
we consider the work by Surana et al. in [13], which features a 1D Stefan problem (with sharp interface)
with a known analytical solution.

ua(x , t) =


C1

erf
(β

2

)
− erf

(
x

2
√
t+t0

)
erf
(β

2

) ; x ≤ γ(0),

C2

erf
(β

2

)
− erf

(
x

2
√
t+t0

)
erfc
(β

2

) ; x > γ(0),

γ(t) = β
√

t + t0.
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The problem is stated in Ω = [0, 1] with constant Dirichlet boundary conditions at x = 0: u(0, t) =
ua(0, t). The initial condition for the PF function φ(x , 0) is calculated here as the stationary solution to
equation (5) neglecting the laplacian term, i.e., G (u(x , 0),φ(x , 0)) = 0. At x = 1, homogeneous Neumann
boundary conditions are imposed for u.

In our case, we consider a rectangular domain Ω = [0, 1] × [0, 0.04], and use a 2D analog of the
boundary and initial conditions employed by Surana et al., treating them as functions of x and independent
of the y -variable.

Indeed, for the boundary conditions, we use u(0, y , t) = ua(0, t), and calculate φ(0, y , t) such that
G (u,φ) = 0. For the rest of the boundary, homogeneous Neumann boundary conditions are employed for
both u and φ.

As in [13], the parameters are chosen as C1 = −0.085, C2 = −0.015, t0 = 0.1246, β = 0.396618. This
translates into γ(0) = 0.14 and we can see that at this point the initial condition has a discontinuity in
the derivative of the temperature. It can also be observed in Figures 2 and 3 that the 0-level set of φ is a
good approximation to the position of the interface.

With respect to the numerical parameters of the models, m = 150 space intervals have been used,
which makes an element size h = 0.0067. The limit ξ ≥ 1.25h as proposed by Fabbri and Voller in [5]
when using fixed-grid methods is employed and, consequently, ξ = 0.0083 has been chosen, to have the
minimum possible ξ without instability in the solution. In this case, we choose a final time of T = 0.5.

(a) t = 0 (b) t = 0.25 (c) t = 0.5

(d) t = 0 (e) t = 0.25 (f) t = 0.5

Figure 2: Temperature u(x , y , t) (above) and PF φ(x , y , t) (below) obtained with the Kobayashi compu-
tational model of the 2D analog of the problem considered in Subsection 3.1.
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Figure 3: Temperature u (left) and PF φ (right) as a function of x for t =0.5. In each case, a red star shows
the analytical position of the interface, whose behavior is successfully replicated by the calculated solution.

3.2 Freezing with circular symmetry

In this section, we use the 2D FEM code to calculate a solution to the Stefan problem in a square domain
with a circular hole, i.e., Ω = (0, 1)2\B((0.5, 0.5), 0.05). The interest of this example, apart from its
physical meaning, is that it motivates the need for an unstructured mesh. In addition to this, for the first
time, a partial refinement of the domain is used (see Figure 4). This is, only the elements in which a phase
transformation can occur are refined.

We first start with Dirichlet boundary conditions on the boundary of the circle, u = −0.015, while we
use homogeneous Neumann conditions on the outer rectangle, simulating an isolated system. Regarding
the initial condition, we use

u(x , y , 0) =

{
−0.015, if (x − 0.5)2 + (y − 0.5)2 ≤ 0.0752,

0.015, otherwise,

and again calculate φ from the value of u. Figure 5 shows the results obtained in the simulation using the
model parameters α = 1 and ξ = 0.0075, element size h = 0.006, and final time T = 0.025.
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Figure 4: The initial mesh (left) is refined repeatedly until all elements close to the initial interface are
small enough to capture a subsequent phase transition. The right image shows the final mesh used in the
calculations.
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If we take a close look as in the left of Figure 6, where the values of u are plotted as a function of the
radius to the center of the domain, we can see that there is now no spike in the temperature. This is thanks
to the smoothing effect of the laplacian term. Finally, on the right of Figure 6, there is a contour plot of
the points of the domain for which u = 0 at four different moments in time. As expected from a physical
point of view, this shows a circle that expands with time but maintains its shape, a direct consequence of
the circular symmetry of the example. We can conclude that the Phase-Field model excels at tracking the
evolution of an existing interface.

(a) t = 0 (b) t = 0.0125 (c) t = 0.025

(d) t = 0 (e) t = 0.0125 (f) t = 0.025

Figure 5: FEM solution for u(x , t) (above) and φ(x , t) (below) for a domain with one hole and initial inter-
face. The following numerical parameters are used: h = 0.006, ξ = 0.0075, T = 0.025, ∆t = 6.21e − 08.
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Figure 6: Behavior of the solution when an initial interface is provided. On the left, temperature is repre-
sented as a function of the radius, for twenty evenly spaced instants. On the right, the projected view of
the level curves for which u = 0 is shown at times t0 = 0, t1 = 0.008, t2 = 0.017 and t3 = 0.025.

http://reportsascm.iec.cat58

http://reportsascm.iec.cat


Max Orteu, Esther Sala-Lardies, Sonia Fernàndez-Méndez

4. Numerical solution

4.1 Weak form and discretization

We start from the system of equations (2) of the Phase-Field model for the Stefan problem in a general
domain Ω, with given Dirichlet boundary conditions u(Γu) = uD and φ(Γφ) = φD , and homogeneous
Neumann boundary conditions ∂u/∂n(∂Ω\Γu) = 0 and ∂φ/∂n(∂Ω\Γφ) = 0.

To solve this system of PDEs using the Finite Element Method, we must first write the weak form of
the problem. First, we multiply both sides by test functions v , w such that v(x) = 0 on Γu and w(x) = 0
on Γφ, we integrate by parts the terms that contain a laplacian operator and impose the homogeneous
Neumann boundary conditions to obtain:

∫
Ω

v
∂u

∂t
= −c

∫
Ω
∇v · ∇u − l

2

∫
Ω

v
∂φ

∂t
,

αξ2

∫
Ω

w
∂φ

∂t
= −ξ2

∫
Ω
∇w · ∇φ+

∫
Ω

wG (u,φ).

(6)

Now, the problem consists on finding u(x , t),φ(x , t) ∈ H1(Ω) such that u(x , t) = uD on Γu, φ(x , t) =
φD on Γφ and so that (6) is satisfied for all v , w ∈ H1(Ω) such that v = 0 on Γu and w = 0 on Γφ.

We discretize (6) with a piece-wise polynomial base and approximate u(x , t) and φ(x , t) as follows:

u(x , t) ' uh(x , t) =
n∑

i=1

ui (t)Ni (x), φ(x , t) ' φh(x , t) =
n∑

i=1

φi (t)Ni (x).

We denote by Bu, Bφ the set of indexes of all nodes on the Dirichlet boundaries Γu and Γφ respectively,
for which we already know the values ui and φi . Substituting into the weak form v = Ni (for i /∈ Bu) and
w = Ni (for i /∈ Bφ), and u(x , t) ' uh(x , t), φ(x , t) ' φh(x , t) we obtain the following system of equations

n∑
j=1

∫
Ω

NiNj
∂uj

∂t
= −c

n∑
j=1

∫
Ω
∇Ni · ∇Njuj −

l

2

n∑
j=1

∫
Ω

NiNj
∂φj
∂t

, i /∈ Bu,

αξ2
n∑

j=1

∫
Ω

NiNj
∂φj
∂t

= −ξ2
n∑

j=1

∫
Ω
∇Ni · ∇Njφj +

n∑
j=1

∫
Ω

NiNjG (uj ,φj), i /∈ Bφ,

where instead of computing the integral
∫

Ω NjG (u,φ), which would be computationally costly, the approx-
imation G (u,φ) ≈

∑
j G (uj ,φj)Nj is used. This introduces the same error as a spline interpolation, which

approximates the calculation with an error hp+1, with p being the order of the polynomial employed. Given
that in all cases, we use linear basis functions, which translates into an h2 error. This coincides with the
error due to the FEM method, and so the convergence remains unaffected.

If we use

Mij =

∫
Ω

NiNj dΩ, Kij =

∫
Ω
∇Ni · ∇Nj dΩ, i 6∈ B, j = 1, ... , n.
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We can rewrite the whole system asMu̇ = −cKu − l
2 Mφ̇,

αξ2Mφ̇ = −ξ2Kφ+ MG (u,φ),

where G (u,φ) denotes the vector with components G (ui ,φi ).

At the time of implementation, we divide the vectors u, φ and matrix M in their components on the
Dirichlet boundary and in the rest of the domain. Noting them by the subscripts F andI , respectively, we
can write:

M =
[

MII MIF

]
, u =

[
uI

uF

]
, φ =

[
φI
φF

]
.

With this decomposition, the system can be written asMII u̇I = −MIF u̇F − cKu − l

2
Mφ̇,

αξ2MII φ̇I = −αξ2MIF φ̇F − ξ2Kφ+ MG (u,φ).
(7)

We solve (7) at each time step using Euler’s method (an explicit, 1st order method):
un+1
I = un

I + ∆tM l ,−1
II

(
−MIF u̇F − cKu − l

2
Mφ̇

)
,

φn+1
I = φnI +

∆t

αξ2
M l ,−1

II (−αξ2MIF φ̇F − ξ2Kφ+ MG (u,φ)).

(8a)

(8b)

This is the final system that can be found in the code. For each time step, for efficiency purposes,
φ̇ is first computed and used in (8a) and (8b). The reader should note the l superindex in the matrix M,
which indicates that we use the lumped mass matrix – a diagonal matrix obtained by summing over rows.
Throughout this work, this correction has proven to not affect the convergence of the results, whereas it
presents an important computational advantage when it comes to solving a system with the matrix M.

5. Conclusions and final remarks

The present work introduces the nature and interpretation of Phase-Field models in the context of the Stefan
problem, highlighting some of its advantages and limitations. One remarkable property, the approximation
to the solution of the Stefan (sharp-interface) model for small ξ, is illustrated by a 2D analog of a 1D example
with analytical solution. In addition, a further example with physical meaning is included.

Regarding the implementation, the code has been tested to be not only precise but also efficient, with
a special mention to the use of the lumped mass matrix. Besides this, the limit ξ ≥ 1.25h has been seen
to work in all cases.

An interesting extension of the work would be to surpass the assumptions made, by considering the
generalized Stefan problem, as described in [4]. For example, different diffusivity constants c could be used
for each phase (possibly with a linear approximation in the interface), or the latent heat could be modelled
as a function of temperature l(u). From a numerical perspective, the implementation of an adaptive mesh
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– as done in [1] – would take full advantage of the FEM, while implicit time integration methods would
allow larger time steps, but with the burden of having to solve a non-linear system of equations. The
increased stability would allow the simulation of a wider class of phenomena, such as the coalescence of
interfaces.
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